Hong Li | Materials Science | Best Scholar Award
Associate Professor at Qingdao University, China.
Hong Li is an Associate Professor at Qingdao University, specializing in the fields of material science and photocatalysis. His research focuses on innovative solutions such as photogenerated cathodic protection of metals, graphene-modified semiconductor composites, and narrow bandgap semiconductor photocatalysis. These technologies are crucial for advancing renewable energy applications and enhancing the sustainability of materials in harsh environments. With multiple leadership roles in significant national and regional research projects, Hong Li has demonstrated a commitment to pioneering new materials with enhanced durability and efficiency under visible light. His work has been recognized through publications in SCI-indexed journals, and he has successfully secured funding for his research from various prestigious foundations. Despite the absence of a citation index or patents, Hong Li’s academic contributions mark him as a rising expert in his field, with a solid foundation in both theory and applied research.
📚 Profile
🎓 Education
Hong Li holds an advanced academic background in material science and chemical engineering, although the specific details of his educational history are not provided. Given his expertise in graphene-modified semiconductor composites and photocatalysis, it is likely that his educational journey involved specialized study in chemical engineering, materials science, or a related field of applied physics. His deep understanding of photogenerated protection and photocatalysis suggests a strong foundation in interdisciplinary sciences, blending chemistry, physics, and engineering. The combination of his theoretical knowledge and practical research experience has positioned him well for his current academic role. His education has undoubtedly contributed to his ability to lead significant research projects and publish in high-impact journals, making him a respected figure in his areas of expertise.
💼 Experience
Hong Li brings extensive academic and research experience to his role as Associate Professor at Qingdao University. He has led several high-profile research projects, including those funded by the National Natural Science Foundation of China and the Shandong Provincial Key R&D Public Welfare Project. His experience in conducting and managing research spans the fields of photogenerated cathodic protection, semiconductor photocatalysis, and graphene-modified composites, positioning him at the forefront of innovation in materials science. Li’s practical involvement in securing competitive grants and publishing his findings in respected journals reflects his solid experience in academic leadership. However, his profile shows a lack of industry consultancy or patents, suggesting that his focus remains heavily on academic research and less on commercialization or industrial applications.
🔬 Research Interests
Hong Li’s research interests lie at the intersection of materials science and sustainable energy solutions. His primary focus is on the photogenerated cathodic protection of metals, an innovative approach to preventing corrosion using light-activated technologies. Additionally, he is deeply invested in the application of graphene-modified semiconductor composites, which hold potential for improving the efficiency of photocatalytic processes. Another area of his interest is narrow bandgap semiconductor photocatalysis, which can play a vital role in enhancing the efficiency of solar energy conversion and environmental protection technologies. By exploring these areas, Li aims to contribute to the development of durable, energy-efficient materials that can withstand challenging environmental conditions, thus advancing both academic knowledge and practical applications in renewable energy.
🏆 Awards and Honors
🔚 Conclusion
Publications Top Notes 📚
Title: Enhanced photocathodic protection performance of Co3S4 nanoparticles modified porous BiVO4 composites for 304 stainless steel
Year: 2025
Author: Hong Li
Citation: Materials Research Bulletin, DOI: 10.1016/j.materresbull.2024.113110
Title: Efficient photocathodic protection of nanoflower MgIn2S4-modified CNNs composites on 316 SS under visible light
Year: 2024
Author: Hong Li
Citation: Materials Research Bulletin, DOI: 10.1016/j.materresbull.2024.112694
Title: Enhancing photocathodic protection of Q235 carbon steel by co-sensitizing TiO2 nanotubes with CdIn2S4 nanogranules and WO3 nanoplates
Year: 2024
Author: Hong Li
Citation: Journal of Alloys and Compounds, DOI: 10.1016/j.jallcom.2023.173184
Title: Review on the Solar-Driven Photocathodic Protection of Metals in the Marine Environment
Year: 2024
Author: Hong Li
Citation: Coatings, DOI: 10.3390/coatings14030276
Title: Enhancing photocathodic protection with Bi quantum dots and ZIF-8 nanoparticle co-sensitized TiO2 nanotubes
Year: 2024
Author: Hong Li
Citation: Nanotechnology, DOI: 10.1088/1361-6528/ad0594
Title: CaIn2S4 nanosheets and SnO2 nanoflowers co-sensitized TiO2 nanotubes photoanode for continuous and efficient photocathodic protection of Q235 carbon steel
Year: 2024
Author: Hong Li
Citation: Journal of Alloys and Compounds, DOI: 10.1016/j.jallcom.2023.172570
Title: Preparation of ZIF-67/BiVO4 composite photoanode and its enhanced photocathodic protection performance of 316 SS under visible light
Year: 2023
Author: Hong Li
Citation: Journal of Alloys and Compounds, DOI: 10.1016/j.jallcom.2023.170926
Title: Highly Efficient Photocathodic Protection Performance of ZIS@CNNs Composites under Visible Light
Year: 2023
Author: Hong Li
Citation: Coatings, DOI: 10.3390/coatings13091479
Title: Efficient photocathodic protection performance of ZnIn2S4 nanosheets/SnO2 quantum dots/TiO2 nanotubes composite for 316 SS under visible light
Year: 2022
Author: Hong Li
Citation: Journal of Alloys and Compounds, DOI: 10.1016/j.jallcom.2022.166901
Title: Direct Z-scheme nanoporous BiVO4/CdS quantum dots heterojunction composites as photoanodes for photocathodic protection of 316 stainless steel under visible light
Year: 2022
Author: Hong Li
Citation: Applied Surface Science, DOI: 10.1016/j.apsusc.2022.154394