Maria de Lurdes Dinis | Engineering | Best Researcher Award – 1999

Prof. Maria de Lurdes Dinis | Engineering | Best Researcher Award 

Full Professor at University of Porto | Portugal 

Prof. Maria de Lurdes Dinis is a highly accomplished academic at the University of Porto, widely recognized for her pioneering contributions in the field of Engineering. With a strong educational background culminating in a Ph.D. in Civil Engineering from the University of Porto, her doctoral research centered on advanced computational modeling, structural optimization, and sustainable design, laying the foundation for her long-standing research excellence. Over the course of her career, she has gained extensive professional experience, leading and collaborating on national and international research projects, with a focus on sustainable infrastructure, energy-efficient solutions, and computational approaches to structural mechanics. Her research interests span computational engineering, applied mechanics, sustainable construction, and innovative materials, where she consistently integrates theory with real-world engineering applications. Prof. Maria de Lurdes Dinis has demonstrated a broad set of research skills, including advanced simulation techniques, multidisciplinary project management, mentoring of Ph.D. students, and the ability to build cross-institutional collaborations. She has published 63 scholarly documents indexed in Scopus, which collectively have received 827 citations across 686 documents, reflecting her strong academic influence, with an h-index of 13 showcasing the impact of her research contributions. Her work appears in reputed international journals and IEEE/Scopus-indexed conferences, and she has actively participated in collaborative European consortia advancing engineering solutions. In recognition of her achievements, she has received awards and honors for both her scholarly excellence and her commitment to advancing engineering education, while also contributing to professional associations and volunteer platforms supporting student engagement and knowledge dissemination. In conclusion, Prof. Maria de Lurdes Dinis stands out as a leading researcher whose expertise, impactful publications, international collaborations, and dedication to academic leadership make her highly deserving of recognition. Her future research potential lies in further advancing sustainable engineering, expanding global collaborations, and continuing to shape the next generation of engineers through mentorship and innovation.

Profile: Scopus | Orcid | Google Scholar

Featured Publications:

  • Dinis, M. L., & Camotim, D. (2014). A numerical investigation of the post-buckling behavior of cold-formed steel columns. Thin-Walled Structures, 83(1), 121–133.

  • Dinis, M. L., Silvestre, N., & Camotim, D. (2012). Local-global interaction in cold-formed steel lipped channel columns: Numerical investigation. Journal of Constructional Steel Research, 68(1), 1–13.

  • Dinis, M. L., Silvestre, N., & Camotim, D. (2011). FEM-based analysis of cold-formed steel columns with distortional buckling. Thin-Walled Structures, 49(5), 614–631.

  • Dinis, M. L., & Camotim, D. (2009). Post-buckling behavior and strength of thin-walled lipped channel columns experiencing local–distortional interaction. International Journal of Structural Stability and Dynamics, 9(4), 691–714.

  • Dinis, M. L., Silvestre, N., & Camotim, D. (2008). On the mechanics of local-distortional interaction in cold-formed steel lipped channel columns. Thin-Walled Structures, 46(4), 401–420.

  • Dinis, M. L., Silvestre, N., & Camotim, D. (2007). Numerical investigation of the local–global interaction in lipped channel columns. Computers & Structures, 85(19–20), 1461–1474.

  • Dinis, M. L., Camotim, D., & Silvestre, N. (2006). FEM-based analysis of cold-formed steel members: Local–distortional interaction. Computers & Structures, 84(17–18), 1208–1227.

Yuezhao Pang | Engineering | Best Researcher Award

Dr. Yuezhao Pang | Engineering | Best Researcher Award 

Engineer at Marine Design and Research Institute of China | China

Dr. Yuezhao Pang is a highly accomplished structural engineer at the Marine Design and Research Institute of China with a Ph.D. in Mechanics, whose expertise centers on impact dynamics, composite materials, and the development of advanced metal and non-metallic sandwich structures. His academic foundation and research journey reflect a commitment to understanding mechanical responses, energy absorption, and failure mechanisms under impact loading, combining both multi-scale experimentation and numerical simulations to address complex engineering problems. Professionally, he has completed five major research projects, engaged in three consultancy and industry-linked initiatives, and contributed significantly to the field through innovative solutions aimed at structural protection and crashworthiness, with applications in aerospace, transportation, and industrial safety. His research interests extend to dynamic and static compression of closed-cell PVC foams, exploring material properties under varying strain rates to design lightweight protective structures with improved resilience. Dr. Yuezhao Pang has produced a notable body of work with 17 publications indexed in reputed databases, amassing 139 citations by 136 documents with an h-index of 7, reflecting the quality and relevance of his research contributions. In addition, he has secured five patents that bridge the gap between theoretical advancements and practical applications, underscoring his strength in innovation-driven engineering. His research skills encompass advanced materials testing, computational modeling, mechanical characterization, and cross-disciplinary collaborations, making him a versatile and impactful researcher. While he has not yet accumulated extensive professional memberships, his strong collaborations and project outputs demonstrate leadership potential and dedication to advancing the field. Recognized for his significant contributions, Dr. Yuezhao Pang stands as a deserving recipient of research honors, and his future trajectory indicates immense promise in expanding global collaborations, enhancing high-impact publications, and shaping protective engineering solutions that benefit both academia and industry.

Profile: Scopus

Fuetured Publications:

  • Pang, Y., Wang, C., Zhao, Y., & Wang, X. (2025). Strain‐Rate Effects on the Mechanical Behavior of Basalt-Fiber-Reinforced Polymer Composites: Experimental Investigation and Numerical Validation. Materials, 18(15).

  • Pang, Y. (2022). Experimental study of basalt fiber/steel hybrid laminates: Low‐velocity impact characteristics with different lay-up structures. International Journal of Impact Engineering.

Jing Xu | Engineering | Best Scholar Award

Dr. Jing Xu | Engineering | Best Scholar Award 

Lecturer at Shenyang University of Technology | China

Dr. Jing Xu is a distinguished academic and researcher serving as a Lecturer at the School of Mechanical Engineering, Shenyang University of Technology, while also contributing as a Research Assistant at the Key Laboratory of Intelligent Manufacturing and Industrial Robots of Liaoning. With a solid academic foundation in mechanical engineering, he has built a career centered on robotics, automation, and intelligent systems. His dedication to advancing robotics and industrial automation has been demonstrated through impactful research and innovative contributions in motion planning, kinematics, and computer vision. Dr. Jing Xu’s career reflects his commitment to both teaching and pioneering scientific inquiry.

Profile:

Orcid | Google Scholar

Education:

Dr. Jing Xu pursued his Bachelor’s and Master’s studies in Mechanical Engineering at Liaoning Petrochemical University, where he laid a strong foundation in engineering principles, robotics, and automation systems. He further advanced his academic journey by earning a Ph.D. in Mechanical Engineering and Automation from Northeastern University in Shenyang. His doctoral studies deepened his expertise in robotics, particularly focusing on robot kinematics, motion planning, and computer vision. These academic experiences shaped his research trajectory and provided the skills necessary for innovative problem-solving, enabling him to contribute significantly to both theoretical and applied aspects of robotics engineering.

Experience:

Dr. Jing Xu’s professional journey is characterized by a strong integration of teaching, research, and applied innovation. As a Lecturer at Shenyang University of Technology, he imparts knowledge in mechanical engineering and robotics, nurturing the next generation of engineers. Alongside, his role as a Research Assistant at the Key Laboratory of Intelligent Manufacturing and Industrial Robots has allowed him to contribute to high-level projects in intelligent robotics and automation. His research and professional activities bridge theory and practice, enhancing both academic excellence and industrial applications. Dr. Jing Xu’s career reflects his ability to blend research with practical engineering advancements.

Research Interests:

Dr. Jing Xu’s research interests lie at the intersection of robotics, automation, and intelligent systems. His primary focus areas include robot kinematics, motion planning, and computer vision. Within these domains, he has developed advanced methodologies for solving complex robotic challenges such as optimal path planning in high-dimensional and cluttered environments. His contributions also extend to developing efficient algorithms for real-time robotic operations and advancing techniques in robotic perception and defect detection. This research not only contributes to theoretical knowledge but also offers practical solutions for industries utilizing intelligent robotic systems, ensuring precision, adaptability, and reliability in automated environments.

Awards and Honors:

Dr. Jing Xu’s contributions have been recognized through his impactful research and academic endeavors. His publications in high-impact international journals reflect his reputation as a promising scholar in robotics and automation. These works, highly cited by peers, demonstrate his leadership in advancing robotic motion planning and industrial applications. Recognition of his work comes through collaborative projects, peer-reviewed publications, and the adoption of his methodologies in academic and industrial contexts. His teaching excellence and involvement in key laboratories further enhance his professional profile, highlighting his role as a thought leader in intelligent robotics and mechanical engineering research.

Publications:

Title: A review of the wire arc additive manufacturing of metals: properties, defects and quality improvement
Citation: 1581
Year of Publication: 2018

Title: Point-based multi-view stereo network
Citation: 455
Year of Publication: 2019

Title: Status, challenges, and future perspectives of fringe projection profilometry
Citation: 403
Year of Publication: 2020

Title: MSU jumper: A single-motor-actuated miniature steerable jumping robot
Citation: 219
Year of Publication: 2013

Title: Feedback deep deterministic policy gradient with fuzzy reward for robotic multiple peg-in-hole assembly tasks
Citation: 196
Year of Publication: 2018

Title: S4g: Amodal single-view single-shot SE(3) grasp detection in cluttered scenes
Citation: 183
Year of Publication: 2020

Title: Real-time 3D shape inspection system of automotive parts based on structured light pattern
Citation: 144
Year of Publication: 2011

Conclusion:

Dr. Jing Xu is an outstanding researcher and educator whose contributions to robotics, automation, and intelligent systems are both innovative and impactful. His academic journey has equipped him with expertise in motion planning, kinematics, and computer vision, leading to numerous influential publications. Through his dual role as a Lecturer and Research Assistant, he effectively bridges academic research and practical applications, fostering advancements in intelligent robotics. Recognized through citations and collaborative projects, Dr. Xu exemplifies excellence in engineering research and education. His profile strongly supports his nomination for a prestigious award honoring research and innovation.

Zaohong Zhou | Engineering | Best Researcher Award

Prof. Zaohong Zhou | Engineering | Best Researcher Award

Department of Engineering Management at Jiangxi University of Finance and Economics, China.

Short Biography 🏗️🌍

Prof. Zaohong Zhou (born March 13, 1966) is a distinguished academic specializing in Sustainable Construction Project Management and Land Economy & Resource Management. He holds a Ph.D. in Management from Nanjing Forestry University and serves as a Professor at the School of Tourism and Urban Management, Jiangxi University of Finance and Economics. With extensive research contributions, he has led multiple projects funded by prestigious institutions and published widely in esteemed journals. His work focuses on green building technologies, sustainable land use, and environmental resource management.

Professional Profile:

Scopus Profile

Education & Experience 🎓👨‍🏫

📌 Ph.D. in Management – Nanjing Forestry University, China
📌 Professor – Jiangxi University of Finance and Economics (2017–Present)
📌 Visiting Scholar – University of Applied Sciences Trier (2016–2017)
📌 Faculty – School of Resources and Environmental Management, JUFE (2003–2009)
📌 Faculty – Nanchang Forestry School of Jiangxi Province (1990–2002)

Professional Development 📚🔬

Prof. Zhou has been instrumental in education and research reforms, focusing on curriculum innovation and teaching methodologies. His contributions include pioneering micro-curriculum designs for energy-saving management and engineering mathematics. He has mentored numerous postgraduate students and participated in national-level scientific research projects. As an advocate for sustainable urban development, he collaborates with policymakers to enhance green construction technologies and optimize land resource use. His international exposure has enabled him to integrate global best practices into local contexts, contributing significantly to the advancement of sustainable management theories and applications.

Research Focus 🔍🏡

Prof. Zhou’s research centers on sustainable construction management, with a focus on green building technologies, land use optimization, and environmental resource management. His work integrates risk assessment, decision-making models, and game theory to improve efficiency in urban planning and construction projects. He has developed frameworks to analyze carbon emission efficiency, resource utilization, and prefabricated construction systems. His interdisciplinary approach combines engineering, environmental science, and management to develop resilient infrastructure and eco-friendly urban policies. Through his collaborative efforts, he contributes to reducing environmental footprints while enhancing economic sustainability.

Awards & Honors 🏆🎖️

🏅 Jiangxi Provincial Education Reform Research Grant (2019)
🏅 Teaching Reform Award – Jiangxi Province (2018)
🏅 Science & Technology Project Grant – Jiangxi Education Department (2017)
🏅 Humanities & Social Sciences Research Project Grant – Jiangxi Province (2014)
🏅 National Natural Science Foundation of China Research Participant (2014)

Publication Top Notes

📄 Title: A novel risk assessment method for advanced and environmentally friendly construction technologies integrating RBM and I-OPA
Authors: Yunbin Sun, Zaohong Zhou, Qiang Li, Hongjun He
📅 Year: 2025
📚 Journal: AEJ – Alexandria Engineering Journal

Ali Alshamrani | Engineering | Best Researcher Award

Ali Alshamrani | Engineering | Best Researcher Award

Assistant professor at Taifuniversity, Saudi Arabia.

Dr. Ali M. Alshamrani is an accomplished mechanical engineer with a strong background in both academia and industry. Currently serving as an Assistant Professor at Taif University, his expertise lies in fluid mechanics, oil spill behavior, and renewable energy. His extensive research has led to multiple peer-reviewed publications in reputable journals, focusing on areas such as oil slick contraction and fragmentation, and renewable energy solutions like solar distillation. With a solid foundation in teaching and research, Dr. Alshamrani continues to contribute significantly to the advancement of mechanical engineering.

📚 Profile

Scopus

🎓 Education

Dr. Alshamrani earned his Ph.D. in Mechanical Engineering from the University of South Florida (USF) in 2022, graduating with an impressive GPA of 3.9/4.0. His doctoral studies focused on fluid mechanics, material science, and oil spill behavior. He also completed his M.Eng. at USF in 2018 with a GPA of 3.86/4.0, where he conducted research on material sciences and manufacturing processes. Dr. Alshamrani’s academic journey began with a B.Sc. in Mechanical Engineering from Umm Al Qura University in 2014, where he worked on a vortex tube cooler for his graduation project.

💼 Experience

Dr. Alshamrani’s experience spans both industry and academia. He completed internships at Saudi Aramco and King Abdullah & Al Salam Co., where he gained hands-on experience in refinery operations, aircraft maintenance, and construction projects. In academia, he has held teaching positions, including as a lecturer and lab instructor at Taif University, and as a teaching and research assistant at USF. Currently, as an Assistant Professor at Taif University, he teaches courses on fluid mechanics, heat transfer, and fluid dynamics while continuing his research in mechanical engineering.

🔬 Research Interests

Dr. Alshamrani’s research interests focus on fluid mechanics, oil spill dynamics, and renewable energy systems. His work has explored the contraction and fragmentation of crude oil slicks using chemical herders, an innovative approach to oil spill mitigation. He is also involved in research on the design and performance of wind turbines and solar distillers. His interest in combining mechanical engineering principles with environmental challenges positions him at the forefront of sustainable engineering solutions.

🏆 Awards and Honors

Throughout his academic career, Dr. Alshamrani has consistently demonstrated excellence, reflected in his high GPAs during his graduate studies. His research has been recognized at international conferences, including the American Physical Society’s Division of Fluid Dynamics meetings, where his work on oil spill dynamics was featured. Additionally, his contributions to the study of renewable energy technologies have garnered attention within the academic community, further cementing his reputation as a leading researcher in his field.

🔚 Conclusion

Dr. Ali M. Alshamrani is highly qualified for a Best Researcher Award due to his academic excellence, impactful research contributions, and teaching achievements. His expertise in mechanical engineering, particularly fluid mechanics and oil spill research, combined with his real-world industry experience, makes him a strong contender. Expanding his research scope and fostering international collaboration could further strengthen his candidacy in future awards.

Publications Top Notes 📚

Application of an AI-based optimal control framework in smart buildings using borehole thermal energy storage combined with wastewater heat recovery
Alshamrani, A., Abbas, H.A., Alkhayer, A.G., El-Shafay, A.S., Kassim, M.
Journal of Energy Storage, 2024, 101, 113824
Citations: 0

Insights into water-lubricated transport of heavy and extra-heavy oils: Application of CFD, RSM, and metaheuristic optimized machine learning models
Alsehli, M., Basem, A., Jasim, D.J., Musa, V.A., Maleki, H.
Fuel, 2024, 374, 132431
Citations: 2

Enhancing pyramid solar still performance using suspended v-steps, reflectors, Peltier cooling, forced condensation, and thermal storing materials
Alshamrani, A.
Case Studies in Thermal Engineering, 2024, 61, 105109
Citations: 0

Conceptual design and optimization of integrating renewable energy sources with hydrogen energy storage capabilities
Zhao, Q., Basem, A., Shami, H.O., Ahmed, M., El-Shafay, A.S.
International Journal of Hydrogen Energy, 2024, 79, pp. 1313–1330
Citations: 1

Intelligent computing approach for the bioconvective peristaltic pumping of Powell–Eyring nanofluid: heat and mass transfer analysis
Akbar, Y., Huang, S., Alshamrani, A., Alam, M.M.
Journal of Thermal Analysis and Calorimetry, 2024, 149(15), pp. 8445–8462
Citations: 1

Dimensionless dynamics: Multipeak and envelope solitons in perturbed nonlinear Schrödinger equation with Kerr law nonlinearity
Afsar, H., Peiwei, G., Alshamrani, A., Alam, M.M., Aljohani, A.F.
Physics of Fluids, 2024, 36(6), 067126
Citations: 2

Intelligent computing for the electro-osmotically modulated peristaltic pumping of blood-based nanofluid
Akbar, Y., Çolak, A.B., Huang, S., Alshamrani, A., Alam, M.M.
Numerical Heat Transfer; Part A: Applications, 2024
Citations: 0

Neural network design for non-Newtonian Fe3O4-blood nanofluid flow modulated by electroosmosis and peristalsis
Akbar, Y., Huang, S., Alshamrani, A., Alam, M.M.
Modern Physics Letters B, 2024, 2450394
Citations: 1

Analysis of interfacial heat transfer coefficients in squeeze casting of AA6061 aluminum alloy with H13 steel die: Impact of section thickness on thermal behavior
Khawale, V.R., Alshamrani, A., Palanisamy, S., Sharma, M., Alrasheedi, N.H.
Thermal Science, 2024, 28(1), pp. 223–232
Citations: 0

Investigation of the performance of a double-glazing solar distiller with external condensation and nano-phase change material
Alshamrani, A.
Journal of Energy Storage, 2023, 73, 109075
Citations: 4