Wei Zhang | Engineering | Breakthrough Innovator Award

Prof.Dr.Wei Zhang | Engineering | Breakthrough Innovator Award 

Doctor of Engineering at Civil Aviation University of China | China 

Prof. Dr. Wei Zhang is a distinguished Doctor of Engineering and Professor at the School of Aeronautical Engineering, Civil Aviation University of China, and a leading researcher at the Research Institute of Science and Technology within the same institution. He earned his Doctor of Engineering degree in Mechanical Manufacturing and Automation from Tianjin University between  and joined the Civil Aviation University of China. progressing from lecturer to associate professor and full professor. His academic experience is further enriched by international exposure as a visiting scholar at the Department of Structural and Materials Mechanics, École Supérieure d’Aéronautique et d’Espace (SUPEA), France, and at the Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, USA, during . Over his career,Prof. Dr. Wei Zhang has contributed significantly to civil aviation engineering and intelligent systems, producing 68 publications in indexed journals, 17 authorized patents, 63 documents, 279 citations, and achieving an h-index of 8. His research focuses on airport operation safety, ground mission intelligence for approaching aircraft, robotics with artificial intelligence, and mechanical dynamics. He has successfully led more than 10 national and industry-sponsored research projects, including NSFC-Civil Aviation Joint Fund initiatives, pioneering semi-autonomous aircraft towing systems, automated airport ground operations, and advanced aircraft inspection technologies. Prof. Dr. Wei Zhang’s work bridges theoretical research with practical applications, collaborating with major industry partners such as COMAC and Beijing Capital International Airport, leading to measurable improvements in operational efficiency, safety, and intelligent manufacturing. He holds key leadership positions as Deputy Director of the National Engineering Research Center for Airport Ground Support Equipment, Executive Director of the Civil Aviation Ground Special Equipment Research Base, and Deputy Director of the Key Laboratory of Civil Aviation Smart Airport Theory and Systems, reflecting his significant influence in the field. With his extensive publications, patents, international collaborations, and leadership roles, Prof. Dr. Wei Zhang has established himself as a global authority in civil aviation engineering, advancing the technological frontiers of airport operations, intelligent systems, and aviation safety through innovative research and applied solutions.

Profile: Scopus

Featured Publications:

  1. Zhang, W. (2026). Research on surface fitting technology for aircraft point cloud feature region based on adaptive complete natural segmentation. Robotics and Autonomous Systems.

  2. Zhang, W., [co-authors]. (2025). Model predictive control with real-time variable weight for civil aircraft towing taxi-out control systems. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering.

  3. Zhang, W., [co-authors]. (2025). Similarity modeling method for coupling vibration system with energy-regenerative suspension. Jixie Kexue Yu Jishu (Mechanical Science and Technology for Aerospace Engineering).

  4. Zhang, W., [co-authors]. (2025). A novel attitude-variable high acceleration motion planning method for the pallet-type airport baggage handling robot. Machines.

  5. Zhang, W., [co-authors]. (2025). Robust adaptive cascade trajectory tracking control for an aircraft towing and taxiing system. Actuators.

  6. Zhang, W., [co-authors]. (2025). Adaptive coordinated control for an under-actuated airplane–tractor system with parameter uncertainties. Engineering Science and Technology: An International Journal.

sejong kim | Engineering | Best Researcher Award

Dr. Sejong Kim | Engineering | Best Researcher Award

Department of Civil Engineering at Hongik University | South Korea 

Dr. Sejong Kim is a distinguished researcher in civil and structural engineering, recognized for his advanced work on the durability and corrosion behavior of reinforced concrete structures in aggressive environments. His academic background is rooted in civil engineering, where he has developed a strong foundation in material science, electrochemistry, and infrastructure sustainability. Over the course of his academic and professional journey, Dr. Sejong Kim has focused on the interplay between carbonation and chloride-induced corrosion in steel reinforcements, applying both experimental and theoretical approaches to address the pressing challenges of structural degradation. His doctoral research and subsequent projects have led to the development of novel electrochemical and gravimetric assessment methods that provide deeper insight into the corrosion mechanisms of steel rebar, thereby enhancing the predictive accuracy of service life models for concrete structures. He has actively collaborated with research teams and industry professionals to develop corrosion monitoring systems and durability evaluation models for marine and urban infrastructure. His scholarly contributions include publications in high-impact journals such as Construction and Building Materials, Corrosion Science, and Buildings (MDPI), reflecting the scientific and practical relevance of his findings. In addition to his research, Dr. Sejong Kim has served as a reviewer for prominent international journals and has participated in interdisciplinary projects aimed at developing sustainable construction materials and smart corrosion monitoring technologies. His research interests encompass reinforced concrete durability, chloride and carbonation-induced deterioration, electrochemical monitoring, and the design of eco-efficient materials for infrastructure resilience. Through his commitment to advancing the field, Dr. Sejong Kim has contributed significantly to the understanding of corrosion mechanisms and the formulation of durability design standards that support long-term sustainability in civil infrastructure. His ongoing work continues to bridge the gap between laboratory innovation and real-world application, promoting safer, more durable, and environmentally conscious engineering practices that align with the future of sustainable urban development.

Profile: Orcid | Sciprofile

Featured Publications:

  • Kim, S., & Choi, J. K. (2025). Electrochemical and Gravimetric Assessment of Steel Rebar Corrosion in Chloride- and Carbonation-Induced Environments. Buildings.

  • Kim, H.; Yang, S.; Noguchi, T.; Yoon, S. (2023). An Assessment of the Structural Performance of Rebar-Corroded Reinforced Concrete Beam Members. Applied Sciences, 13(19), 10927.

Maria de Lurdes Dinis | Engineering | Best Researcher Award – 1999

Prof. Maria de Lurdes Dinis | Engineering | Best Researcher Award 

Full Professor at University of Porto | Portugal 

Prof. Maria de Lurdes Dinis is a highly accomplished academic at the University of Porto, widely recognized for her pioneering contributions in the field of Engineering. With a strong educational background culminating in a Ph.D. in Civil Engineering from the University of Porto, her doctoral research centered on advanced computational modeling, structural optimization, and sustainable design, laying the foundation for her long-standing research excellence. Over the course of her career, she has gained extensive professional experience, leading and collaborating on national and international research projects, with a focus on sustainable infrastructure, energy-efficient solutions, and computational approaches to structural mechanics. Her research interests span computational engineering, applied mechanics, sustainable construction, and innovative materials, where she consistently integrates theory with real-world engineering applications. Prof. Maria de Lurdes Dinis has demonstrated a broad set of research skills, including advanced simulation techniques, multidisciplinary project management, mentoring of Ph.D. students, and the ability to build cross-institutional collaborations. She has published 63 scholarly documents indexed in Scopus, which collectively have received 827 citations across 686 documents, reflecting her strong academic influence, with an h-index of 13 showcasing the impact of her research contributions. Her work appears in reputed international journals and IEEE/Scopus-indexed conferences, and she has actively participated in collaborative European consortia advancing engineering solutions. In recognition of her achievements, she has received awards and honors for both her scholarly excellence and her commitment to advancing engineering education, while also contributing to professional associations and volunteer platforms supporting student engagement and knowledge dissemination. In conclusion, Prof. Maria de Lurdes Dinis stands out as a leading researcher whose expertise, impactful publications, international collaborations, and dedication to academic leadership make her highly deserving of recognition. Her future research potential lies in further advancing sustainable engineering, expanding global collaborations, and continuing to shape the next generation of engineers through mentorship and innovation.

Profile: Scopus | Orcid | Google Scholar

Featured Publications:

  • Dinis, M. L., & Camotim, D. (2014). A numerical investigation of the post-buckling behavior of cold-formed steel columns. Thin-Walled Structures, 83(1), 121–133.

  • Dinis, M. L., Silvestre, N., & Camotim, D. (2012). Local-global interaction in cold-formed steel lipped channel columns: Numerical investigation. Journal of Constructional Steel Research, 68(1), 1–13.

  • Dinis, M. L., Silvestre, N., & Camotim, D. (2011). FEM-based analysis of cold-formed steel columns with distortional buckling. Thin-Walled Structures, 49(5), 614–631.

  • Dinis, M. L., & Camotim, D. (2009). Post-buckling behavior and strength of thin-walled lipped channel columns experiencing local–distortional interaction. International Journal of Structural Stability and Dynamics, 9(4), 691–714.

  • Dinis, M. L., Silvestre, N., & Camotim, D. (2008). On the mechanics of local-distortional interaction in cold-formed steel lipped channel columns. Thin-Walled Structures, 46(4), 401–420.

  • Dinis, M. L., Silvestre, N., & Camotim, D. (2007). Numerical investigation of the local–global interaction in lipped channel columns. Computers & Structures, 85(19–20), 1461–1474.

  • Dinis, M. L., Camotim, D., & Silvestre, N. (2006). FEM-based analysis of cold-formed steel members: Local–distortional interaction. Computers & Structures, 84(17–18), 1208–1227.

Yuezhao Pang | Engineering | Best Researcher Award

Dr. Yuezhao Pang | Engineering | Best Researcher Award 

Engineer at Marine Design and Research Institute of China | China

Dr. Yuezhao Pang is a highly accomplished structural engineer at the Marine Design and Research Institute of China with a Ph.D. in Mechanics, whose expertise centers on impact dynamics, composite materials, and the development of advanced metal and non-metallic sandwich structures. His academic foundation and research journey reflect a commitment to understanding mechanical responses, energy absorption, and failure mechanisms under impact loading, combining both multi-scale experimentation and numerical simulations to address complex engineering problems. Professionally, he has completed five major research projects, engaged in three consultancy and industry-linked initiatives, and contributed significantly to the field through innovative solutions aimed at structural protection and crashworthiness, with applications in aerospace, transportation, and industrial safety. His research interests extend to dynamic and static compression of closed-cell PVC foams, exploring material properties under varying strain rates to design lightweight protective structures with improved resilience. Dr. Yuezhao Pang has produced a notable body of work with 17 publications indexed in reputed databases, amassing 139 citations by 136 documents with an h-index of 7, reflecting the quality and relevance of his research contributions. In addition, he has secured five patents that bridge the gap between theoretical advancements and practical applications, underscoring his strength in innovation-driven engineering. His research skills encompass advanced materials testing, computational modeling, mechanical characterization, and cross-disciplinary collaborations, making him a versatile and impactful researcher. While he has not yet accumulated extensive professional memberships, his strong collaborations and project outputs demonstrate leadership potential and dedication to advancing the field. Recognized for his significant contributions, Dr. Yuezhao Pang stands as a deserving recipient of research honors, and his future trajectory indicates immense promise in expanding global collaborations, enhancing high-impact publications, and shaping protective engineering solutions that benefit both academia and industry.

Profile: Scopus

Fuetured Publications:

  • Pang, Y., Wang, C., Zhao, Y., & Wang, X. (2025). Strain‐Rate Effects on the Mechanical Behavior of Basalt-Fiber-Reinforced Polymer Composites: Experimental Investigation and Numerical Validation. Materials, 18(15).

  • Pang, Y. (2022). Experimental study of basalt fiber/steel hybrid laminates: Low‐velocity impact characteristics with different lay-up structures. International Journal of Impact Engineering.

Jing Xu | Engineering | Best Scholar Award

Dr. Jing Xu | Engineering | Best Scholar Award 

Lecturer at Shenyang University of Technology | China

Dr. Jing Xu is a distinguished academic and researcher serving as a Lecturer at the School of Mechanical Engineering, Shenyang University of Technology, while also contributing as a Research Assistant at the Key Laboratory of Intelligent Manufacturing and Industrial Robots of Liaoning. With a solid academic foundation in mechanical engineering, he has built a career centered on robotics, automation, and intelligent systems. His dedication to advancing robotics and industrial automation has been demonstrated through impactful research and innovative contributions in motion planning, kinematics, and computer vision. Dr. Jing Xu’s career reflects his commitment to both teaching and pioneering scientific inquiry.

Profile:

Orcid | Google Scholar

Education:

Dr. Jing Xu pursued his Bachelor’s and Master’s studies in Mechanical Engineering at Liaoning Petrochemical University, where he laid a strong foundation in engineering principles, robotics, and automation systems. He further advanced his academic journey by earning a Ph.D. in Mechanical Engineering and Automation from Northeastern University in Shenyang. His doctoral studies deepened his expertise in robotics, particularly focusing on robot kinematics, motion planning, and computer vision. These academic experiences shaped his research trajectory and provided the skills necessary for innovative problem-solving, enabling him to contribute significantly to both theoretical and applied aspects of robotics engineering.

Experience:

Dr. Jing Xu’s professional journey is characterized by a strong integration of teaching, research, and applied innovation. As a Lecturer at Shenyang University of Technology, he imparts knowledge in mechanical engineering and robotics, nurturing the next generation of engineers. Alongside, his role as a Research Assistant at the Key Laboratory of Intelligent Manufacturing and Industrial Robots has allowed him to contribute to high-level projects in intelligent robotics and automation. His research and professional activities bridge theory and practice, enhancing both academic excellence and industrial applications. Dr. Jing Xu’s career reflects his ability to blend research with practical engineering advancements.

Research Interests:

Dr. Jing Xu’s research interests lie at the intersection of robotics, automation, and intelligent systems. His primary focus areas include robot kinematics, motion planning, and computer vision. Within these domains, he has developed advanced methodologies for solving complex robotic challenges such as optimal path planning in high-dimensional and cluttered environments. His contributions also extend to developing efficient algorithms for real-time robotic operations and advancing techniques in robotic perception and defect detection. This research not only contributes to theoretical knowledge but also offers practical solutions for industries utilizing intelligent robotic systems, ensuring precision, adaptability, and reliability in automated environments.

Awards and Honors:

Dr. Jing Xu’s contributions have been recognized through his impactful research and academic endeavors. His publications in high-impact international journals reflect his reputation as a promising scholar in robotics and automation. These works, highly cited by peers, demonstrate his leadership in advancing robotic motion planning and industrial applications. Recognition of his work comes through collaborative projects, peer-reviewed publications, and the adoption of his methodologies in academic and industrial contexts. His teaching excellence and involvement in key laboratories further enhance his professional profile, highlighting his role as a thought leader in intelligent robotics and mechanical engineering research.

Publications:

Title: A review of the wire arc additive manufacturing of metals: properties, defects and quality improvement
Citation: 1581
Year of Publication: 2018

Title: Point-based multi-view stereo network
Citation: 455
Year of Publication: 2019

Title: Status, challenges, and future perspectives of fringe projection profilometry
Citation: 403
Year of Publication: 2020

Title: MSU jumper: A single-motor-actuated miniature steerable jumping robot
Citation: 219
Year of Publication: 2013

Title: Feedback deep deterministic policy gradient with fuzzy reward for robotic multiple peg-in-hole assembly tasks
Citation: 196
Year of Publication: 2018

Title: S4g: Amodal single-view single-shot SE(3) grasp detection in cluttered scenes
Citation: 183
Year of Publication: 2020

Title: Real-time 3D shape inspection system of automotive parts based on structured light pattern
Citation: 144
Year of Publication: 2011

Conclusion:

Dr. Jing Xu is an outstanding researcher and educator whose contributions to robotics, automation, and intelligent systems are both innovative and impactful. His academic journey has equipped him with expertise in motion planning, kinematics, and computer vision, leading to numerous influential publications. Through his dual role as a Lecturer and Research Assistant, he effectively bridges academic research and practical applications, fostering advancements in intelligent robotics. Recognized through citations and collaborative projects, Dr. Xu exemplifies excellence in engineering research and education. His profile strongly supports his nomination for a prestigious award honoring research and innovation.

Hsin Yuan Chen | Engineering | Best Scholar Award

Prof. Hsin Yuan Chen | Engineering | Best Scholar Award

Professor at Zhejiang University | China

Dr. Hsin Yuan Chen is a leading scholar and technologist, currently serving as a Changjiang Scholar Professor and Director at Zhejiang University’s Institute of Wenzhou, Center of Digital Technology Entrepreneurship and Innovation. With an extensive academic and industrial background, she has made significant contributions in smart agriculture, AI, robotics, and digital transformation. Dr. Chen’s interdisciplinary expertise bridges engineering, healthcare, and artificial intelligence, and her work has impacted education, industry collaboration, and technological advancement across Asia. Her recognition includes international fellowships, keynote speaker roles, and leadership in major research centers, positioning her as a dynamic force in intelligent systems and innovation.

Profile:

Google Scholar

Education:

Dr. Hsin Yuan Chen earned her Bachelor’s and Ph.D. degrees in Aerospace Engineering from National Cheng Kung University, Taiwan, completing her doctorate in 2000. She complemented her formal education with a visiting professorship at Washington University in St. Louis, USA, which deepened her global academic perspective. Her educational journey has been distinguished by a strong foundation in systems control, aerospace, and robotics, which later evolved to encompass AI, digital agriculture, and interdisciplinary technology management. This robust academic training underpins her approach to integrating theoretical insights with practical innovations in smart technologies and data-driven platforms.

Experience:

Dr. Hsin Yuan Chen’s professional journey spans over two decades of academic, governmental, and industrial roles. She served as Professor and Dean at Fujian Normal University, CTO at GEOSAT Technology and Mobiletron Electronics, and Assistant Professor at multiple Taiwanese institutions. Additionally, she held advisory roles in patent offices and high-tech companies, contributing to projects on AI positioning systems, smart agriculture, and unmanned vehicles. Her international engagements include collaborations with institutions such as McGill University and Washington University. These diverse experiences enrich her ability to lead transdisciplinary teams and execute complex, innovation-focused initiatives across multiple sectors.

Research Interest:

Dr. Hsin Yuan Chen’s research focuses on the convergence of artificial intelligence, smart agriculture, IoT, blockchain, and autonomous systems. Her projects have addressed real-world challenges in digital transformation, healthcare innovation, and sustainable agriculture. A particular interest lies in integrating explainable AI with blockchain to enhance decision-making in agricultural technology. She is also actively involved in robotics, wireless positioning systems, and medical platforms leveraging sensor technology. Her passion for developing inclusive, intelligent systems is reflected in her projects like AI Doctors for crops and Paro Robots for health monitoring, aiming to merge emotion detection with deep learning-based automation.

Awards and Honors:

Dr. Hsin Yuan Chen has received prestigious accolades including the ScienceFather International Outstanding Scientist Award (2024), IET Fellowship (2023), and ASEAN Fellowship (2022). She was recognized with national teaching excellence awards, innovation medals in higher education, and championship titles in robotics competitions. Her pioneering work has also earned distinctions in cloud technology and virtual cultural heritage. As a member of high-level talent programs in Zhejiang and Fujian Provinces, and a recipient of multiple creativity group medals, Dr. Chen’s impact extends across education, technology, and international science forums. Her awards reflect both scholarly excellence and societal contributions.

Publications:

Title: Exploring the sensitivity of next generation gravitational wave detectors

Citations: 1533

Year of Publication: 2017

Title: Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies

Citations: 1322

Year of Publication: 2022

Title: Carbon nanotube computer

Citations: 1228

Year of Publication: 2013

Title: Three dimensional reconstruction of a solid-oxide fuel-cell anode

Citations: 1019

Year of Publication: 2006

Title: GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current

Citations: 895

Year of Publication: 2008

Title: Plasmonic nanolaser using epitaxially grown silver film

Citations: 878

Year of Publication: 2012

Title: Translation and back‐translation in qualitative nursing research: methodological review

Citations: 874

Year of Publication: 2010

Title: Mapping the Evolution: A Bibliometric Analysis of Employee Engagement and Performance in the Age of AI-Based Solutions
Year of Publication: 2025

Title: Advancements in Handwritten Devanagari Character Recognition: A Study on Transfer Learning and VGG16 Algorithm
Citations: 3
Year of Publication: 2024

Title: Intellectual Structure of Explainable Artificial Intelligence: A Bibliometric Reference to Research Constituents
Year of Publication: 2024

Title: Integrating Explainable Artificial Intelligence and Blockchain to Smart Agriculture: Research Prospects for Decision Making and Improved Security
Citations: 39
Year of Publication: 2023

Conclusion:

Dr. Hsin Yuan Chen exemplifies excellence in research, leadership, and innovation, making her a strong candidate for the Best Researcher Award. Her prolific output in scientific publications, transformative projects in smart agriculture and digital health, and her commitment to knowledge transfer through academia-industry collaborations illustrate her deep impact. Dr. Chen’s fusion of AI with real-world applications—particularly in sustainable systems and intelligent automation—positions her at the forefront of global innovation. Her recognition across international platforms affirms her thought leadership and the lasting value of her contributions to science, technology, and education.

Uzma Amin | Engineering | Best Researcher Award

Dr. Uzma Amin | Engineering | Best Researcher Award

Lecturer at Curtin University, Australia.

Dr. Uzma Amin 🎓 is a passionate Lecturer in Electrical Engineering ⚡, with a Ph.D. in the field and over a decade of commitment to academia and applied research. She actively contributes to education through curriculum development and international teaching collaborations 🌍. As a member of IEEE, WIE, and the Young Professional Engineers network 👩‍💻, she also plays a key role in professional communities. Her work bridges academia and industry through hands-on supervision of student-industry projects 🔧. In addition to her technical contributions, she is a committed reviewer and volunteer, driving innovation and empowerment in engineering education 🚀.

Professional Profile:

Scopus

Google Scholar

Suitability For Best Researcher award – Dr. Uzma Amin

Dr. Uzma Amin exemplifies the ideal candidate for the Best Researcher Award through her balanced contributions in research, academia, industrial collaboration, and international teaching. With a Ph.D. in Electrical Engineering, she maintains a strong publication record, participates actively in global professional networks (IEEE, WIE), and has shown leadership and innovation in curriculum design and engineering education. Her research, which aligns with sustainable and impactful themes like renewable energy integration, electrical power systems, and smart grids, is both applied and interdisciplinary, reinforcing her significance in today’s technological landscape.

📘 Education & Experience

  • 🎓 Ph.D. in Electrical Engineering

  • 👩‍🏫 Lecturer in Electrical Engineering

  • 🌐 Taught postgraduate units at Curtin and Yanshan University under international collaboration

  • 📚 Developed and redesigned undergraduate and postgraduate engineering curricula

  • 🔬 23 research publications in indexed journals

  • 🤝 Supervised industrial projects with Regen Pvt Ltd, Rio Tinto, Partum Engineering, and EPC Australia

  • 🌍 Member of IEEE, WIE, and Young Professional Engineers

📈 Professional Development

Dr. Uzma Amin’s professional development reflects her proactive pursuit of excellence in engineering education and practice 🌟. She received the prestigious FHEA fellowship in 2022 🎖️, recognizing her pedagogical innovation. As a vice-chair of IEEE WIE WA section in 2023, she actively organized workshops and networking events 🤝. Her consistent role as a reviewer for top-tier journals like IEEE Access and Elsevier’s Applied Energy 📑 illustrates her influence in academic circles. Her teaching, curriculum innovation, and industrial partnerships exemplify a progressive career dedicated to both research impact and engineering education transformation 💡.

🔬 Research Focus Category

Dr. Uzma Amin’s research lies primarily in Electrical Power Systems and Renewable Energy Integration ⚡🌱. Her work addresses real-world engineering problems through applied research, with a strong emphasis on renewable power generation systems, electrical machines, and energy systems optimization 🔋. With 23 publications, she contributes to fields intersecting smart grids, clean energy, and sustainable power infrastructure 🌍. Her industry collaborations with companies like Rio Tinto and Electric Power Conversions Australia underscore the applied nature of her research 🛠️. She also reviews work in computational energy analysis and advanced electrical systems, reflecting a technically diverse focus 📘.

🏅 Awards and Honors

  • 🎖️ FHEA Fellowship, 2022 – Recognized for excellence in higher education teaching

  • 👩‍💼 Vice-Chair, IEEE Women in Engineering (WIE), WA Section, 2023

  • 📝 Regular Reviewer for top journals (IEEE Access, Elsevier, MDPI, etc.)

Publication Top Notes

1. Optimal price based control of HVAC systems in multizone office buildings for demand response

  • Authors: U. Amin, M. J. Hossain, E. Fernandez

  • Journal: Journal of Cleaner Production

  • Volume: 270

  • Article No.: 122059

  • Cited by: 67

  • Year: 2020

  • Summary: This paper proposes a price-based control strategy for HVAC systems in multizone office buildings to enhance energy efficiency and responsiveness in demand-side management under smart grid settings.

2. Computational tools for design, analysis, and management of residential energy systems

  • Authors: K. Mahmud, U. Amin, M. J. Hossain, J. Ravishankar

  • Journal: Applied Energy

  • Volume: 221

  • Pages: 535–556

  • Cited by: 52

  • Year: 2018

  • Summary: The article surveys and evaluates various computational tools that assist in designing and managing residential energy systems, particularly under the influence of emerging distributed energy resources.

3. Integration of renewable energy resources in microgrid

  • Authors: M. Ahmed, U. Amin, S. Aftab, Z. Ahmed

  • Journal: Energy and Power Engineering

  • Volume: 7 (1)

  • Pages: 12–29

  • Cited by: 44

  • Year: 2015

  • Summary: This study discusses the integration strategies of renewable energy sources in microgrids and addresses the associated challenges and opportunities from technical and economic perspectives.

4. Design, construction and study of small scale vertical axis wind turbine based on a magnetically levitated axial flux permanent magnet generator

  • Authors: G. Ahmad, U. Amin

  • Journal: Renewable Energy

  • Volume: 101

  • Pages: 286–292

  • Cited by: 39

  • Year: 2017

  • Summary: This work presents a detailed design and performance analysis of a small-scale vertical axis wind turbine, incorporating a magnetically levitated generator to reduce friction and improve energy efficiency.

5. Energy trading in local electricity market with renewables—A contract theoretic approach

  • Authors: U. Amin, M. J. Hossain, W. Tushar, K. Mahmud

  • Journal: IEEE Transactions on Industrial Informatics

  • Volume: 17 (6)

  • Pages: 3717–3730

  • Cited by: 37

  • Year: 2020

  • Summary: The paper develops a contract-theoretic framework for local energy trading in a renewable-integrated smart grid setting, ensuring fair pricing and demand satisfaction.

6. Performance analysis of an experimental smart building: Expectations and outcomes

  • Authors: U. Amin, M. J. Hossain, J. Lu, E. Fernandez

  • Journal: Energy

  • Volume: 135

  • Pages: 740–753

  • Cited by: 34

  • Year: 2017

  • Summary: This study presents real-time data and performance evaluation of an experimental smart building, highlighting discrepancies between expected and actual outcomes in energy consumption and management.

🧾 Conclusion

In conclusion, Dr. Uzma Amin’s career trajectory, research excellence, and international impact make her an outstanding contender for the Best Researcher Award. Her ability to merge technical depth with practical relevance, academic influence, and community engagement embodies the spirit of a researcher committed not just to discovery but also to societal and industrial transformation. Recognizing her with this award would celebrate a truly multidimensional and forward-thinking scholar. 🏆

Samira Azizi | Engineering | Best Researcher Award

Ms. Samira Azizi | Engineering | Best Researcher Award

Ph.D candidate at Politecnico di Milano, Italy.

Samira Azizi 🎓 is a Ph.D. candidate at Politecnico di Milano 🇮🇹, specializing in smart structural control and vision-based structural health monitoring (SHM) 🏗️📹. Her work focuses on enhancing earthquake resilience through real-time damage detection and adaptive stiffness systems 🌐⚙️. She has contributed significantly to full-field motion estimation using video data and advanced optimization techniques such as particle swarm algorithms 🧠📈. As a dedicated researcher, Samira serves on editorial boards 📚, reviews for prestigious journals ✍️, and engages in innovative, non-contact SHM technologies. Her passion lies in bridging advanced engineering with intelligent monitoring solutions 🌍💡.

Professional Profile:

Scopus

ORCID

Suitability For Best Researcher Award:

Samira Azizi is highly suitable for the Best Researcher Award based on her cutting-edge research, interdisciplinary innovation, and global academic engagement. Her work bridges structural engineering, artificial intelligence, and computer vision, with a clear focus on non-contact, vision-based structural health monitoring (SHM) — a domain crucial for infrastructure safety in earthquake-prone regions. Her leadership as a peer reviewer and editorial board member, combined with impactful publications and innovative methodologies, demonstrate excellence and commitment to advancing civil engineering research.

🔹 Education & Experience

🎓 Education:

  • Ph.D. Candidate in Structural EngineeringPolitecnico di Milano, Italy 🇮🇹

  • Research background in system identification, control systems, and structural health monitoring 🏗️

💼 Experience:

  • Short-term research contract (ongoing) at Politecnico di Milano 🔬

  • Peer reviewer for journals including PLOS ONE, Engineering Structures, and Experimental Mechanics 📰

  • Editorial board member of Frontiers in Built Environment 📖

  • Published multiple high-impact research papers in SCI/Scopus-indexed journals 📑

🔹 Professional Development

Samira Azizi has demonstrated exceptional professional growth through collaborative research projects and technical expertise in system dynamics and SHM technologies 🔍🤝. Her editorial roles and frequent peer reviewing across top journals reflect her critical thinking and in-depth knowledge 📘🔬. She continues to refine her research acumen by actively engaging in advanced image processing and video-based structural analysis 📹🧠. With a focus on non-contact, intelligent monitoring frameworks, she is also pursuing a research contract at Politecnico di Milano, enhancing her academic trajectory 🚀. Samira’s constant pursuit of innovation and precision defines her as a rising star in engineering research 🌟📐.

🔹 Research Focus Area

Samira’s research centers on vision-based structural identification and control systems 🎥🏗️. Her innovative work bridges civil engineering with artificial intelligence and image processing 🤖📸, aiming to improve structural integrity assessment without physical sensors. She develops non-contact, video-based motion estimation frameworks that track both macro and subpixel movements, ideal for real-time damage detection ⚡🔧. By integrating tools like particle swarm optimization and complexity pursuit, her studies push forward the field of output-only modal analysis 🌀📉. Her goal is to create sustainable, smart monitoring systems for resilient infrastructure in seismically active regions 🌍🛠️.

🔹 Awards & Honors

🏆 Awards & Recognitions:

  • ✨ Selected editorial board member – Frontiers in Built Environment

  • 🏅 Reviewer for reputed journals: PLOS ONE, Engineering Structures, Experimental Mechanics, etc.

  • 📝 Multiple peer-reviewed journal publications in top-tier SCI/Scopus outlets

  • 🎓 Invited speaker and contributor at international conferences (e.g., ECSA-10)

  • 🌐 Recognized for developing innovative semi-active stiffness control systems and full-field video measurement techniques

Publication Top Notes

Article Title:

Structural Identification Using Digital Image Correlation Technology

Authors:
  • Samira S. Azizi

  • Kaveh K. Karami

  • Stefano S. Mariani

Published in:

Engineering Proceedings, 2023
Access: Open Access (Link currently disabled)

Abstract Summary

This paper explores the application of Digital Image Correlation (DIC) technology for structural identification in engineering systems. DIC is a non-contact optical method used to measure deformation, displacement, and strain by tracking speckle patterns on the surface of materials. The study focuses on the implementation of DIC to assess the structural response under various loading conditions. Through experimental validation and comparative analysis, the authors demonstrate the effectiveness of DIC in enhancing the accuracy and reliability of structural health monitoring techniques.

🏁 Conclusion:

Samira Azizi exemplifies the qualities of a Best Researcher Award recipient. Her interdisciplinary approach, scientific rigor, and global academic engagement place her at the forefront of innovation in structural engineering. She is not only shaping the future of smart infrastructure but also elevating the standards of academic research and collaboration. Awarding her this recognition would honor a truly transformative contributor to engineering science.

Chuanbo Cui | Engineering | Best Researcher Award

Prof. Chuanbo Cui | Engineering | Best Researcher Award

Associate professor at Taiyuan University of Technology, China.

Dr. Chuanbo Cui 🎓 is an Associate Professor at the School of Safety and Emergency Management Engineering, Taiyuan University of Technology 🏫. He specializes in mine ventilation, fire prevention, and emergency escape systems in coal mining operations 🔥🚨. Dr. Cui obtained his Ph.D. in Engineering from the China University of Mining and Technology 🎓 and served as a visiting scholar at the University of Maryland in the USA 🌍. A prolific researcher, he has authored numerous SCI-indexed publications 📚, holds 16+ patents 🔏, and contributes actively to coal mine safety innovation and practical industrial applications 🛠️.

Professional Profile:

Scopus

Suitability for Best Researcher Award – Dr. Chuanbo Cui

Dr. Chuanbo Cui is a highly suitable candidate for the Best Researcher Award owing to his profound and practical contributions to the fields of mine safety, fire prevention, and spontaneous combustion control. As an Associate Professor and a lead researcher in safety and emergency management, he has bridged the gap between academic research and real-world industrial applications. His interdisciplinary work has led to significant advancements in fire suppression technology, safety engineering, and disaster mitigation strategies, especially in the high-risk environment of coal mining.

🔹 Education & Experience

  • 🎓 B.Sc. in Mathematics and Applied MathematicsChina University of Mining and Technology (2014)

  • 🎓 Ph.D. in Safety Science and EngineeringChina University of Mining and Technology (2019)

  • 🌍 Visiting ScholarDepartment of Fire Protection Engineering, University of Maryland, USA (2018)

  • 👨‍🏫 Associate ProfessorTaiyuan University of Technology (Dec 2019–Present)

🔹 Professional Development

Dr. Cui has demonstrated a commitment to professional development through active research, collaboration, and innovation 📚🤝. He has completed multiple national and provincial-level projects funded by the National Natural Science Foundation of China and other academic bodies 🏢📑. As a member of the Doctoral Think Tank Working Committee under the China International Science and Technology Promotion Association 💡🇨🇳, he contributes to policy and scientific advancement. Dr. Cui also collaborates on initiatives with prestigious institutions and laboratories 🔬, transforming academic findings into real-world technologies that advance mine safety and emergency preparedness 🚨⛑️.

🔹 Research Focus

Dr. Cui’s research is centered on mine safety and disaster risk reduction 🚧🔥. His work includes ventilation systems, fire prevention and extinguishing technologies, spontaneous combustion inhibition, and emergency management in underground coal mining 🏞️🛠️. He explores novel materials like thermo-sensitive inhibitors and microcapsule agents for mitigating fire and explosion hazards 🔬💥. Additionally, he develops virtual reality (VR) systems for fire escape training, enhancing preparedness and psychological resilience 🧠🕹️. His interdisciplinary research spans safety monitoring, gas dynamics, and emergency avoidance, contributing practical innovations to high-risk industrial environments ⚙️🛡️.

🔹 Awards and Honors 🏆

  • 🥇 Best Researcher Award Nominee – (Category preference submitted)

  • 🏅 Recognized as a key contributor to national safety innovation projects

  • 📜 Multiple authorized Chinese patents in mine safety, fire suppression, and mechanical devices

  • 🤝 Participated in high-impact national-level collaborations and provincial key research programs

Publication Top Notes

📄 1. Multiple Indicator Gases and Temperature Prediction of Coal Spontaneous Combustion Oxidation Process

Authors: Changkui Lei, Quanchao Feng, Yaoqian Zhu, Ruoyu Bao, Cunbao Deng
Journal: Fuel
Year: 2025
Abstract Summary:
This study investigates the correlation between multiple indicator gases and temperature evolution during the spontaneous combustion of coal. By analyzing the generation and migration of gases such as CO, CO₂, and hydrocarbons under controlled oxidation conditions, the authors propose a temperature prediction model to monitor early signs of combustion. This model is essential for improving mine safety and preventing fire hazards.

📄 2. Migration Characteristics and Prediction of High Temperature Points in Coal Spontaneous Combustion

Authors: Changkui Lei, Yaoqian Zhu, Quanchao Feng, Chuanbo Cui, Cunbao Deng
Journal: Energy
Year: 2025
Abstract Summary:
This paper focuses on the dynamic behavior of high-temperature zones during the spontaneous combustion of coal. The authors model the migration of these hot spots based on thermal diffusion theory and propose a predictive framework to locate them before critical ignition. This research aids in early detection and mitigation of combustion risks in coal mining.

JUN WON HO | Computer Engineering | Best Researcher Award

Dr. JUN WON HO | Computer Engineering | Best Researcher Award

Research Fellow at Incheon National University, South Korea.

Dr. Jun Won-Ho 🎓 is a dedicated Research Fellow at Incheon National University, South Korea 🇰🇷. He earned his Ph.D. in Computer Engineering in February 2023 🧠, focusing on sleep pattern analysis in an unconscious, non-intrusive state 🛏️. His innovations aim to revolutionize sleep health through biosensor-based technologies 💡. With peer-reviewed publications in SCI-indexed journals 📚 and a patent on body weight estimation while lying in bed 🧾, Dr. Jun is making sleep monitoring accessible and home-based. His work bridges healthcare and engineering, offering practical solutions for sleep apnea detection 🩺 using biosensors and ambient signals 🌐.

Professional Profile:

ORCID

Suitability for Best Researcher Award – Dr. Jun Won-Ho

Dr. Jun Won-Ho is highly suitable for the Best Researcher Award due to his pioneering research at the intersection of biomedical engineering and computer science. Despite being an early-career researcher, he has demonstrated remarkable innovation and scientific productivity, especially in the field of non-intrusive sleep health monitoring. His Ph.D. and postdoctoral work have resulted in SCI-indexed journal publications, a granted patent, and the development of AI-based, contact-free technologies to address global health concerns like sleep apnea—showing both originality and real-world impact.

🎓 Education and Experience

  • 🎓 Ph.D. in Computer EngineeringIncheon National University (2023)

  • 🧪 Research FellowIncheon National University (Current)

  • 📄 Published in SCI-indexed journalsIncluding Sensors

  • 🛏️ Doctoral ResearchFocused on unobtrusive sleep pattern analysis

  • 🔬 Ongoing ResearchDevelopment of self-screening technology for sleep apnea

  • 🧾 Patent HolderSystem for estimating body weight while lying on a bed

🚀 Professional Development

Dr. Jun Won-Ho has significantly contributed to the field of sleep science and biomedical engineering 🧠. His journey began with a strong academic foundation in computer engineering 🎓, which he has transformed into impactful research focused on real-world health challenges 🩺. He has authored articles in SCI-indexed journals 📚 and currently works on a cutting-edge sleep apnea screening solution using biosensors and environmental data 🌙📊. His patented invention 🧾 and active engagement in non-contact health monitoring technologies reflect his innovative mindset and commitment to improving global health accessibility 🌍💡.

🧬 Research Focus Category

Dr. Jun Won-Ho’s research falls under the category of Biomedical Engineering and Sleep Science 🧠🛌. He is especially focused on unobtrusive health monitoring, developing systems that use biosensors, physiological signals, and environmental data to analyze sleep patterns and detect sleep disorders like apnea 😴🩺. His goal is to eliminate the need for intrusive clinical testing such as polysomnography 🧪 and instead offer home-based, AI-powered health solutions 🌐📲. His patented work on weight estimation during sleep complements his broader mission of advancing digital health technologies for continuous, contact-free care 🧾💡.

🏅 Awards and Honors

  • 🧾 Patent GrantedSystem for Estimating Body Weight While Lying on a Bed (KR 10-2556030)

  • 📄 SCI-Indexed PublicationsPublished 2 articles in renowned journals like Sensors

  • 📌 Ph.D. AchievementDoctorate completed with impactful research in 2023

  • 🏆 Nominated for Best Researcher AwardFor contributions to biomedical sleep technology

  • 🧠 Research Innovation RecognitionDevelopment of non-contact sleep apnea screening system

Publication Top Notes

1. Detection of Sleep Posture via Humidity Fluctuation Analysis in a Sensor-Embedded Pillow

  • Published: April 30, 2025

  • Journal: Bioengineering

  • DOI: 10.3390/bioengineering12050480

  • Summary: This study introduces a novel method for detecting sleep posture by analyzing humidity fluctuations using sensors embedded in a pillow. The system monitors changes caused by respiration and perspiration, offering a non-invasive approach to sleep posture detection.

2. Sleep Pattern Analysis in Unconstrained and Unconscious State

  • Published: November 29, 2022

  • Journal: Sensors

  • DOI: 10.3390/s22239296

  • Citation Count: 6

  • Summary: This research analyzes sleep patterns in individuals without physical constraints or active awareness. Utilizing various sensors, the study collects physiological and environmental data to classify sleep stages, providing insights into natural sleep behaviors.MDPI

3. Multi-Sensor Data Fusion with a Reconfigurable Module and Its Application to Unmanned Storage Boxes

  • Published: July 19, 2022

  • Journal: Sensors

  • DOI: 10.3390/s22145388

  • Citation Count: 12

  • Summary: This paper presents a reconfigurable module for multi-sensor data fusion, applied to unmanned storage boxes. By integrating data from various sensors, the system enhances reliability and security in automated storage environments.

Conclusion

Dr. Jun Won-Ho exemplifies the qualities of a Best Researcher Award recipient through his innovative mindset, impactful biomedical applications, and commitment to global health technology advancement. His work is not only academically rigorous but also practically transformative, making essential health monitoring more accessible, affordable, and patient-friendly. He stands out as a rising star in biomedical engineering, well-deserving of this prestigious recognition.