Samira Azizi | Engineering | Best Researcher Award

Ms. Samira Azizi | Engineering | Best Researcher Award

Ph.D candidate at Politecnico di Milano, Italy.

Samira Azizi ๐ŸŽ“ is a Ph.D. candidate at Politecnico di Milano ๐Ÿ‡ฎ๐Ÿ‡น, specializing in smart structural control and vision-based structural health monitoring (SHM) ๐Ÿ—๏ธ๐Ÿ“น. Her work focuses on enhancing earthquake resilience through real-time damage detection and adaptive stiffness systems ๐ŸŒโš™๏ธ. She has contributed significantly to full-field motion estimation using video data and advanced optimization techniques such as particle swarm algorithms ๐Ÿง ๐Ÿ“ˆ. As a dedicated researcher, Samira serves on editorial boards ๐Ÿ“š, reviews for prestigious journals โœ๏ธ, and engages in innovative, non-contact SHM technologies. Her passion lies in bridging advanced engineering with intelligent monitoring solutions ๐ŸŒ๐Ÿ’ก.

Professional Profile:

Scopus

ORCID

Suitability For Best Researcher Award:

Samira Azizi is highly suitable for the Best Researcher Award based on her cutting-edge research, interdisciplinary innovation, and global academic engagement. Her work bridges structural engineering, artificial intelligence, and computer vision, with a clear focus on non-contact, vision-based structural health monitoring (SHM) โ€” a domain crucial for infrastructure safety in earthquake-prone regions. Her leadership as a peer reviewer and editorial board member, combined with impactful publications and innovative methodologies, demonstrate excellence and commitment to advancing civil engineering research.

๐Ÿ”น Education & Experience

๐ŸŽ“ Education:

  • Ph.D. Candidate in Structural Engineering โ€“ Politecnico di Milano, Italy ๐Ÿ‡ฎ๐Ÿ‡น

  • Research background in system identification, control systems, and structural health monitoring ๐Ÿ—๏ธ

๐Ÿ’ผ Experience:

  • Short-term research contract (ongoing) at Politecnico di Milano ๐Ÿ”ฌ

  • Peer reviewer for journals including PLOS ONE, Engineering Structures, and Experimental Mechanics ๐Ÿ“ฐ

  • Editorial board member of Frontiers in Built Environment ๐Ÿ“–

  • Published multiple high-impact research papers in SCI/Scopus-indexed journals ๐Ÿ“‘

๐Ÿ”น Professional Development

Samira Azizi has demonstrated exceptional professional growth through collaborative research projects and technical expertise in system dynamics and SHM technologies ๐Ÿ”๐Ÿค. Her editorial roles and frequent peer reviewing across top journals reflect her critical thinking and in-depth knowledge ๐Ÿ“˜๐Ÿ”ฌ. She continues to refine her research acumen by actively engaging in advanced image processing and video-based structural analysis ๐Ÿ“น๐Ÿง . With a focus on non-contact, intelligent monitoring frameworks, she is also pursuing a research contract at Politecnico di Milano, enhancing her academic trajectory ๐Ÿš€. Samiraโ€™s constant pursuit of innovation and precision defines her as a rising star in engineering research ๐ŸŒŸ๐Ÿ“.

๐Ÿ”น Research Focus Area

Samiraโ€™s research centers on vision-based structural identification and control systems ๐ŸŽฅ๐Ÿ—๏ธ. Her innovative work bridges civil engineering with artificial intelligence and image processing ๐Ÿค–๐Ÿ“ธ, aiming to improve structural integrity assessment without physical sensors. She develops non-contact, video-based motion estimation frameworks that track both macro and subpixel movements, ideal for real-time damage detection โšก๐Ÿ”ง. By integrating tools like particle swarm optimization and complexity pursuit, her studies push forward the field of output-only modal analysis ๐ŸŒ€๐Ÿ“‰. Her goal is to create sustainable, smart monitoring systems for resilient infrastructure in seismically active regions ๐ŸŒ๐Ÿ› ๏ธ.

๐Ÿ”น Awards & Honors

๐Ÿ† Awards & Recognitions:

  • โœจ Selected editorial board member โ€“ Frontiers in Built Environment

  • ๐Ÿ… Reviewer for reputed journals: PLOS ONE, Engineering Structures, Experimental Mechanics, etc.

  • ๐Ÿ“ Multiple peer-reviewed journal publications in top-tier SCI/Scopus outlets

  • ๐ŸŽ“ Invited speaker and contributor at international conferences (e.g., ECSA-10)

  • ๐ŸŒ Recognized for developing innovative semi-active stiffness control systems and full-field video measurement techniques

Publication Top Notes

Article Title:

Structural Identification Using Digital Image Correlation Technology

Authors:
  • Samira S. Azizi

  • Kaveh K. Karami

  • Stefano S. Mariani

Published in:

Engineering Proceedings, 2023
Access: Open Access (Link currently disabled)

Abstract Summary

This paper explores the application of Digital Image Correlation (DIC) technology for structural identification in engineering systems. DIC is a non-contact optical method used to measure deformation, displacement, and strain by tracking speckle patterns on the surface of materials. The study focuses on the implementation of DIC to assess the structural response under various loading conditions. Through experimental validation and comparative analysis, the authors demonstrate the effectiveness of DIC in enhancing the accuracy and reliability of structural health monitoring techniques.

๐Ÿ Conclusion:

Samira Azizi exemplifies the qualities of a Best Researcher Award recipient. Her interdisciplinary approach, scientific rigor, and global academic engagement place her at the forefront of innovation in structural engineering. She is not only shaping the future of smart infrastructure but also elevating the standards of academic research and collaboration. Awarding her this recognition would honor a truly transformative contributor to engineering science.

Zaohong Zhou | Engineering | Best Researcher Award

Prof. Zaohong Zhou | Engineering | Best Researcher Award

Department of Engineering Management at Jiangxi University of Finance and Economics, China.

Short Biography ๐Ÿ—๏ธ๐ŸŒ

Prof. Zaohong Zhou (born March 13, 1966) is a distinguished academic specializing in Sustainable Construction Project Management and Land Economy & Resource Management. He holds a Ph.D. in Management from Nanjing Forestry University and serves as a Professor at the School of Tourism and Urban Management, Jiangxi University of Finance and Economics. With extensive research contributions, he has led multiple projects funded by prestigious institutions and published widely in esteemed journals. His work focuses on green building technologies, sustainable land use, and environmental resource management.

Professional Profile:

Scopus Profile

Education & Experience ๐ŸŽ“๐Ÿ‘จโ€๐Ÿซ

๐Ÿ“Œ Ph.D. in Management โ€“ Nanjing Forestry University, China
๐Ÿ“Œ Professor โ€“ Jiangxi University of Finance and Economics (2017โ€“Present)
๐Ÿ“Œ Visiting Scholar โ€“ University of Applied Sciences Trier (2016โ€“2017)
๐Ÿ“Œ Faculty โ€“ School of Resources and Environmental Management, JUFE (2003โ€“2009)
๐Ÿ“Œ Faculty โ€“ Nanchang Forestry School of Jiangxi Province (1990โ€“2002)

Professional Development ๐Ÿ“š๐Ÿ”ฌ

Prof. Zhou has been instrumental in education and research reforms, focusing on curriculum innovation and teaching methodologies. His contributions include pioneering micro-curriculum designs for energy-saving management and engineering mathematics. He has mentored numerous postgraduate students and participated in national-level scientific research projects. As an advocate for sustainable urban development, he collaborates with policymakers to enhance green construction technologies and optimize land resource use. His international exposure has enabled him to integrate global best practices into local contexts, contributing significantly to the advancement of sustainable management theories and applications.

Research Focus ๐Ÿ”๐Ÿก

Prof. Zhou’s research centers on sustainable construction management, with a focus on green building technologies, land use optimization, and environmental resource management. His work integrates risk assessment, decision-making models, and game theory to improve efficiency in urban planning and construction projects. He has developed frameworks to analyze carbon emission efficiency, resource utilization, and prefabricated construction systems. His interdisciplinary approach combines engineering, environmental science, and management to develop resilient infrastructure and eco-friendly urban policies. Through his collaborative efforts, he contributes to reducing environmental footprints while enhancing economic sustainability.

Awards & Honors ๐Ÿ†๐ŸŽ–๏ธ

๐Ÿ… Jiangxi Provincial Education Reform Research Grant (2019)
๐Ÿ… Teaching Reform Award โ€“ Jiangxi Province (2018)
๐Ÿ… Science & Technology Project Grant โ€“ Jiangxi Education Department (2017)
๐Ÿ… Humanities & Social Sciences Research Project Grant โ€“ Jiangxi Province (2014)
๐Ÿ… National Natural Science Foundation of China Research Participant (2014)

Publication Top Notes

๐Ÿ“„ Title: A novel risk assessment method for advanced and environmentally friendly construction technologies integrating RBM and I-OPA
โœ Authors: Yunbin Sun, Zaohong Zhou, Qiang Li, Hongjun He
๐Ÿ“… Year: 2025
๐Ÿ“š Journal: AEJ – Alexandria Engineering Journal