Shailendra Sinha | Engineering | Editorial Board Member

Dr. Shailendra Sinha | Engineering | Editorial Board Member 

Professor at Institute of Engineering and Technology  | India

Dr. Shailendra Sinha is a distinguished academic and researcher at the Institute of Engineering and Technology (IET), Lucknow, India, recognized for his strong contributions to engineering education, applied research, and the advancement of computer science. Known for his dedication to academic excellence, he combines deep theoretical understanding with practical technological innovation, consistently striving to enhance learning outcomes and foster technical leadership. Dr. Sinha has built a solid educational foundation in computer science and engineering, complemented by progressive teaching and research experience that reflects his commitment to intellectual growth and innovation. His academic journey includes advanced studies and extensive engagement with evolving computational paradigms, enabling him to contribute meaningfully to curriculum development, student mentorship, and interdisciplinary collaboration. Over the course of his career, Dr. Sinha has produced impactful research, evidenced by 1,405 citations across 1,271 documents, 53 published works, and an h-index of 15, highlighting the relevance and influence of his scholarly contributions. His research interests span emerging technologies, data-driven systems, computational intelligence, and innovative engineering methodologies aimed at addressing contemporary challenges in the digital landscape. He consistently integrates modern research insights into classroom instruction, bridging the gap between theory and application, and preparing students for the demands of rapidly advancing technological environments. Dr. Sinha has participated in numerous academic initiatives and collaborative projects, demonstrating his commitment to expanding the boundaries of knowledge and promoting technical excellence. He remains actively engaged in guiding students, contributing to academic committees, and supporting the development of engineering education through research-driven strategies. As a respected member of the engineering community, Dr. Shailendra Sinha continues to uphold high standards of scholarship, innovation, and professional integrity, striving to create meaningful impact through his research, teaching, and collaborative endeavors while nurturing the next generation of engineers and fostering a culture of inquiry and advancement within the academic ecosystem.

Profile: Scopus | Orcid 

Featured Publications:

  • Yadav, A. K., & Sinha, S. (2024). Techno-economic and environmental analysis of a hybrid power system formed from solid oxide fuel cell, gas turbine, and organic Rankine cycle. Journal of Energy Resources Technology, Transactions of the ASME, 146(7), 1–11.

  • Yadav, A. K., & Sinha, S. (2024). Advancements in composite cathodes for intermediate-temperature solid oxide fuel cells: A comprehensive review. International Journal of Hydrogen Energy, 59, 1080–1093.

  • Yadav, A. K., Kumar, A., & Sinha, S. (2023). Comprehensive review on performance assessment of solid oxide fuel cell-based hybrid power generation systems. Thermal Science and Engineering Progress, 46, 102226.

  • Verma, S. K., Dubey, V., & Sinha, S. (2021). A review on additive mixed electrical discharge machining processes. Materials Today: Proceedings, 709–715.

  • Singh, A., & Sinha, S. (2021). Optimization of operating parameters of diesel engine powered with Jatropha oil diesel blend by employing response surface methodology. International Journal of Renewable Energy Research, 504–513.

  • Nigam, A. P., & Sinha, S. (2020). Techniques to control IC engine exhaust emissions through modification in fuel and intake air – A review. Journal of Ambient Energy.

  • Singh, A., & Sinha, S. (2020). Optimization of performance and emission characteristics of CI engine fueled with Jatropha biodiesel produced using a heterogeneous catalyst (CaO). Fuel.

  • Agrawal, B. N., & Sinha, S. (2019). Effect of vegetable oil share on combustion characteristics and thermal efficiency of diesel engine fueled with different blends. Thermal Science and Engineering Progress, 14, 100404.

  • Sinha, S., & Agarwal, A. K. (2007). Experimental investigation of the performance and emission characteristics of direct injection medium duty transport diesel engine using Rice-bran oil biodiesel. In ASME Internal Combustion Engine Division Fall Technical Conference.

  • Sinha, S., & Agarwal, A. K. (2006). Combustion characteristics of Rice bran oil derived biodiesel in a transportation diesel engine. In Proceedings of ICES 2006, ASME I.C. Engine Division Spring Technical Conference

Shuai Li | Engineering | Best Researcher Award

Dr. Shuai Li | Engineering | Best Researcher Award

Lecturer at Henan University of Urban Construction, China

Dr. Shuai Li is a lecturer at Henan University of Urban Construction, specializing in geotechnical engineering with a focus on civil engineering disaster prevention and mitigation. He earned his Doctor’s degree in Engineering Mechanics from Northeastern University in 2017. Dr. Li has led and participated in multiple high-profile research projects funded by the National Natural Science Foundation of China and other prestigious institutions. His work has resulted in five published patents, with a notable focus on rock mass behavior under dynamic conditions. He has authored several research papers in reputable journals, including Scientific Reports and Rock Mechanics and Rock Engineering. Dr. Li’s research contributes to the understanding of surface deformation during tunnel construction, with applications in urban infrastructure projects like the Shenyang Subway. His academic contributions and innovative solutions have made a significant impact on both the scientific community and the practical field of civil engineering.

Professional Profile : 

Google Scholar

Education: 

Dr. Shuai Li completed his educational journey with a focus on engineering mechanics and geotechnical engineering. He earned his Bachelor’s degree in Engineering Mechanics from Northeastern University in China. Afterward, he pursued advanced studies at the same institution, where he obtained his Doctorate in Engineering in October 2017. His doctoral research concentrated on civil engineering disaster prevention and mitigation, laying the foundation for his subsequent academic and professional endeavors. During his academic tenure, Dr. Li developed expertise in geotechnical engineering, specifically in the study of rock mass behavior, dynamic loading, and the stability of underground structures. His extensive training in experimental and numerical analysis has enabled him to contribute significantly to both theoretical and applied research in his field. Through his education, Dr. Li acquired the skills and knowledge necessary to engage in cutting-edge research projects, becoming a leading figure in civil engineering disaster mitigation and geotechnical stability.

Professional Experience :

Dr. Shuai Li is a Lecturer at the School of Civil and Traffic Engineering at Henan University of Urban Construction, where he focuses on geotechnical engineering and civil engineering disaster prevention. He completed his Ph.D. in Engineering Mechanics at Northeastern University in 2017. Over the years, Dr. Li has participated in several key research projects, including those funded by the National Natural Science Foundation of China and China Postdoctoral Science Foundation, and has led various scientific initiatives. His work primarily addresses the deformation behavior of rock masses under dynamic loading, with particular expertise in the stability of underground structures such as tunnels. Dr. Li’s contributions to the field include significant experimental and numerical studies on tunneling deformation and rock mass mechanics, especially in the context of subway construction. He has published numerous papers in SCI journals and holds multiple patents related to geotechnical testing and engineering solutions. He is also active in academic leadership, serving as an editor and guest editor for scientific journals.

Research Interest :

Dr. Shuai Li’s research primarily focuses on geotechnical engineering, with a particular emphasis on civil engineering disaster prevention and mitigation. His work investigates the mechanical behavior of rock masses under dynamic conditions, especially during processes like shield tunneling, and the associated surface deformation. Dr. Li has contributed significantly to the development of finite element analysis (FEA) simulations to study the stability of underground structures, such as subway tunnels. His research also explores rock mechanics, including mixed-mode fracture characteristics, stress relaxation in sandstone, and the effects of dynamic disturbances on the creep behavior of rocks. In addition, he is involved in innovative testing methods for rock permeability and rheological relaxation, contributing to the design and analysis of geotechnical engineering projects. Dr. Li’s work is vital for improving the safety and stability of infrastructure in complex geological environments, with applications in urban tunneling, mining, and civil construction.

Award and Honor :

Dr. Shuai Li has received significant recognition for his contributions to geotechnical engineering and civil engineering disaster prevention. He has been a key participant in multiple prestigious research projects, including those funded by the National Natural Science Foundation of China and the China Postdoctoral Science Foundation. His work on shield tunneling and surface deformation, particularly for the Shenyang Subway Line 2, has provided crucial insights into underground construction safety. Dr. Li has published extensively in top-tier SCI journals and holds numerous patents related to geotechnical testing and rock mechanics. His research excellence has earned him a reputation as an innovative scientist, with his methodologies widely applicable to urban infrastructure projects. Additionally, Dr. Li has been recognized for his editorial roles, such as serving as Lead Guest Editor for a special issue on rheological rock in extreme geological environments. His outstanding contributions to both academia and practical engineering have solidified his place as a leading researcher in his field.

Conclusion :

Dr. Shuai Li’s work has made substantial contributions to the field of geotechnical and civil engineering, particularly in disaster prevention and mitigation for infrastructure projects. His innovative research in areas such as shield tunneling, rock mechanics, and stress relaxation in dynamic conditions has earned him recognition both in academia and industry. Through his involvement in national research projects and as a principal investigator, he has helped advance key technologies for safer, more efficient civil engineering practices. His publications in highly regarded SCI journals and multiple patents reflect his leadership and expertise in the field. Furthermore, Dr. Li’s editorial roles and collaborative research efforts demonstrate his commitment to advancing knowledge and fostering innovation. His work continues to shape practices in geotechnical engineering, offering valuable insights for the future of infrastructure development. Dr. Li’s dedication to both academic research and practical applications positions him as a prominent figure in his field.

Publications Top Noted :

  • Title: Influence of dynamic disturbance on the creep of sandstone: an experimental study
    Authors: W. Zhu, S. Li, S. Li, L. Niu
    Year: 2019
    Citations: 64
  • Title: Experimental and numerical study on stress relaxation of sandstones disturbed by dynamic loading
    Authors: W. Zhu, S. Li, L. Niu, K. Liu, T. Xu
    Year: 2016
    Citations: 29
  • Title: Experimental study on creep of double-rock samples disturbed by dynamic impact
    Authors: S. Li, W. Zhu, L. Niu, K. Guan, T. Xu
    Year: 2021
    Citations: 16
  • Title: Time-frequency distribution analysis of the stress relaxation of sandstones affected by dynamic disturbance
    Authors: S. Li, W.C. Zhu, T. Xu, R.X. He
    Year: 2019
    Citations: 3
  • Title: Numerical modeling on blasting stress wave in interbedding rheological rockmass for the stability of the main shaft of mine
    Authors: S. Li, C. Zheng, Y. Zhao
    Year: 2022
    Citations: 2
  • Title: An experimental study on stress relaxation of Yunnan sandstone
    Authors: S. Li, C. Zheng, P. Li
    Year: 2022
    Citations: 1
  • Title: Investigating surface settlements during shield tunneling using numerical analysis
    Authors: R. He, Z. Zhou, S. Li, S. Vanapalli
    Year: 2024
    Citations: 0 (as of 2024)
  • Title: Experimental study on I/II/III mixed mode fracture characteristics of a combined rock mass under creep loading
    Authors: S. Li, C. Zheng, P. Li, S. Zhang
    Year: 2024
    Citations: 0 (as of 2024)