Shailendra Sinha | Engineering | Editorial Board Member

Dr. Shailendra Sinha | Engineering | Editorial Board Member 

Professor at Institute of Engineering and Technology  | India

Dr. Shailendra Sinha is a distinguished academic and researcher at the Institute of Engineering and Technology (IET), Lucknow, India, recognized for his strong contributions to engineering education, applied research, and the advancement of computer science. Known for his dedication to academic excellence, he combines deep theoretical understanding with practical technological innovation, consistently striving to enhance learning outcomes and foster technical leadership. Dr. Sinha has built a solid educational foundation in computer science and engineering, complemented by progressive teaching and research experience that reflects his commitment to intellectual growth and innovation. His academic journey includes advanced studies and extensive engagement with evolving computational paradigms, enabling him to contribute meaningfully to curriculum development, student mentorship, and interdisciplinary collaboration. Over the course of his career, Dr. Sinha has produced impactful research, evidenced by 1,405 citations across 1,271 documents, 53 published works, and an h-index of 15, highlighting the relevance and influence of his scholarly contributions. His research interests span emerging technologies, data-driven systems, computational intelligence, and innovative engineering methodologies aimed at addressing contemporary challenges in the digital landscape. He consistently integrates modern research insights into classroom instruction, bridging the gap between theory and application, and preparing students for the demands of rapidly advancing technological environments. Dr. Sinha has participated in numerous academic initiatives and collaborative projects, demonstrating his commitment to expanding the boundaries of knowledge and promoting technical excellence. He remains actively engaged in guiding students, contributing to academic committees, and supporting the development of engineering education through research-driven strategies. As a respected member of the engineering community, Dr. Shailendra Sinha continues to uphold high standards of scholarship, innovation, and professional integrity, striving to create meaningful impact through his research, teaching, and collaborative endeavors while nurturing the next generation of engineers and fostering a culture of inquiry and advancement within the academic ecosystem.

Profile: Scopus | Orcid 

Featured Publications:

  • Yadav, A. K., & Sinha, S. (2024). Techno-economic and environmental analysis of a hybrid power system formed from solid oxide fuel cell, gas turbine, and organic Rankine cycle. Journal of Energy Resources Technology, Transactions of the ASME, 146(7), 1–11.

  • Yadav, A. K., & Sinha, S. (2024). Advancements in composite cathodes for intermediate-temperature solid oxide fuel cells: A comprehensive review. International Journal of Hydrogen Energy, 59, 1080–1093.

  • Yadav, A. K., Kumar, A., & Sinha, S. (2023). Comprehensive review on performance assessment of solid oxide fuel cell-based hybrid power generation systems. Thermal Science and Engineering Progress, 46, 102226.

  • Verma, S. K., Dubey, V., & Sinha, S. (2021). A review on additive mixed electrical discharge machining processes. Materials Today: Proceedings, 709–715.

  • Singh, A., & Sinha, S. (2021). Optimization of operating parameters of diesel engine powered with Jatropha oil diesel blend by employing response surface methodology. International Journal of Renewable Energy Research, 504–513.

  • Nigam, A. P., & Sinha, S. (2020). Techniques to control IC engine exhaust emissions through modification in fuel and intake air – A review. Journal of Ambient Energy.

  • Singh, A., & Sinha, S. (2020). Optimization of performance and emission characteristics of CI engine fueled with Jatropha biodiesel produced using a heterogeneous catalyst (CaO). Fuel.

  • Agrawal, B. N., & Sinha, S. (2019). Effect of vegetable oil share on combustion characteristics and thermal efficiency of diesel engine fueled with different blends. Thermal Science and Engineering Progress, 14, 100404.

  • Sinha, S., & Agarwal, A. K. (2007). Experimental investigation of the performance and emission characteristics of direct injection medium duty transport diesel engine using Rice-bran oil biodiesel. In ASME Internal Combustion Engine Division Fall Technical Conference.

  • Sinha, S., & Agarwal, A. K. (2006). Combustion characteristics of Rice bran oil derived biodiesel in a transportation diesel engine. In Proceedings of ICES 2006, ASME I.C. Engine Division Spring Technical Conference

Ing. Hem Bahadur Motra | Engineering | Best Researcher Award

Dr. Ing. Hem Bahadur Motra | Engineering | Best Researcher Award 

Lecturer at University of Kiel | Germany

Dr.Ing. Hem Bahadur Motra is a highly accomplished researcher and academic specializing in geomechanics, rock physics, and geotechnical engineering at the University of Kiel, Germany. His professional journey reflects a deep commitment to advancing the understanding of subsurface processes through innovative experimental and computational approaches. He holds advanced degrees in civil and structural engineering and has completed extensive postdoctoral research in geotechnics, rock mechanics, and subsurface physics. As a research associate and head of the Geomechanics and Rock Mechanics Experimental Laboratory at Kiel University, he has contributed significantly to the study of the mechanical, thermal, and acoustic behavior of geomaterials under complex in-situ conditions. His multidisciplinary expertise bridges geosciences, civil engineering, and energy technologies, integrating rock physics, structural mechanics, and environmental sustainability. Dr.Ing. Hem Bahadur Motra has authored 47 scientific documents with 625 citations across 537 publications and holds an h-index of 14, reflecting the strong academic impact of his research. His extensive publication record spans top-tier journals, including International Journal of Rock Mechanics and Mining Sciences, Applied Energy, and Geotechnical and Geological Engineering. His research interests encompass multiscale geomechanical modeling, seismic anisotropy, CO₂ storage, geothermal energy, and the use of artificial intelligence in geological systems. He has led and collaborated on numerous national and international research projects funded by organizations such as DFG, DAAD, and the EU, focusing on sustainable infrastructure, rock deformation, and energy geotechnics. Beyond research, Dr.Ing. Hem Bahadur Motra plays an influential role as an editorial board member and special issue editor for several prestigious journals, contributing to the dissemination of cutting-edge developments in the field. His leadership in scientific committees, professional societies, and technical working groups further highlights his commitment to advancing interdisciplinary collaboration. Through his pioneering research, academic mentorship, and global collaborations, Dr.Ing. Hem Bahadur Motra continues to make impactful contributions to the scientific community, shaping the future of geotechnical and rock mechanics research and promoting innovative, sustainable solutions to address the challenges of modern engineering and Earth sciences.

Profile: Scopus | Orcid | Google Scholar

Featured Publications:

  • Motra, H. B.(2018). Geomechanical rock properties using pressure and temperature dependence of elastic P- and S-wave velocities. Geotechnical and Geological Engineering, 36(6), 3751–3766.

  • Motra, H. B.(2018). Poisson’s ratio and auxetic properties of natural rocks. Journal of Geophysical Research: Solid Earth, 123(2), 1161–1185.

  • Motra, H. B.(2019). Laboratory evaluation of rock-based geopolymers for zonal isolation and permanent P&A applications. Journal of Petroleum Science and Engineering, 175, 352–362.

  • Motra, H. B.(2017). Meso-scale modeling of heat transport in a heterogeneous cemented geomaterial by lattice element method. Granular Matter, 19, 1–12.

  • Motra, H. B.(2021). Pressure, temperature and lithological dependence of seismic and magnetic susceptibility anisotropy in amphibolites and gneisses from the central Scandinavian Caledonides. Tectonophysics, 820, 229113.

sejong kim | Engineering | Best Researcher Award

Dr. Sejong Kim | Engineering | Best Researcher Award

Department of Civil Engineering at Hongik University | South Korea 

Dr. Sejong Kim is a distinguished researcher in civil and structural engineering, recognized for his advanced work on the durability and corrosion behavior of reinforced concrete structures in aggressive environments. His academic background is rooted in civil engineering, where he has developed a strong foundation in material science, electrochemistry, and infrastructure sustainability. Over the course of his academic and professional journey, Dr. Sejong Kim has focused on the interplay between carbonation and chloride-induced corrosion in steel reinforcements, applying both experimental and theoretical approaches to address the pressing challenges of structural degradation. His doctoral research and subsequent projects have led to the development of novel electrochemical and gravimetric assessment methods that provide deeper insight into the corrosion mechanisms of steel rebar, thereby enhancing the predictive accuracy of service life models for concrete structures. He has actively collaborated with research teams and industry professionals to develop corrosion monitoring systems and durability evaluation models for marine and urban infrastructure. His scholarly contributions include publications in high-impact journals such as Construction and Building Materials, Corrosion Science, and Buildings (MDPI), reflecting the scientific and practical relevance of his findings. In addition to his research, Dr. Sejong Kim has served as a reviewer for prominent international journals and has participated in interdisciplinary projects aimed at developing sustainable construction materials and smart corrosion monitoring technologies. His research interests encompass reinforced concrete durability, chloride and carbonation-induced deterioration, electrochemical monitoring, and the design of eco-efficient materials for infrastructure resilience. Through his commitment to advancing the field, Dr. Sejong Kim has contributed significantly to the understanding of corrosion mechanisms and the formulation of durability design standards that support long-term sustainability in civil infrastructure. His ongoing work continues to bridge the gap between laboratory innovation and real-world application, promoting safer, more durable, and environmentally conscious engineering practices that align with the future of sustainable urban development.

Profile: Orcid | Sciprofile

Featured Publications:

  • Kim, S., & Choi, J. K. (2025). Electrochemical and Gravimetric Assessment of Steel Rebar Corrosion in Chloride- and Carbonation-Induced Environments. Buildings.

  • Kim, H.; Yang, S.; Noguchi, T.; Yoon, S. (2023). An Assessment of the Structural Performance of Rebar-Corroded Reinforced Concrete Beam Members. Applied Sciences, 13(19), 10927.

Maria de Lurdes Dinis | Engineering | Best Researcher Award – 1999

Prof. Maria de Lurdes Dinis | Engineering | Best Researcher Award 

Full Professor at University of Porto | Portugal 

Prof. Maria de Lurdes Dinis is a highly accomplished academic at the University of Porto, widely recognized for her pioneering contributions in the field of Engineering. With a strong educational background culminating in a Ph.D. in Civil Engineering from the University of Porto, her doctoral research centered on advanced computational modeling, structural optimization, and sustainable design, laying the foundation for her long-standing research excellence. Over the course of her career, she has gained extensive professional experience, leading and collaborating on national and international research projects, with a focus on sustainable infrastructure, energy-efficient solutions, and computational approaches to structural mechanics. Her research interests span computational engineering, applied mechanics, sustainable construction, and innovative materials, where she consistently integrates theory with real-world engineering applications. Prof. Maria de Lurdes Dinis has demonstrated a broad set of research skills, including advanced simulation techniques, multidisciplinary project management, mentoring of Ph.D. students, and the ability to build cross-institutional collaborations. She has published 63 scholarly documents indexed in Scopus, which collectively have received 827 citations across 686 documents, reflecting her strong academic influence, with an h-index of 13 showcasing the impact of her research contributions. Her work appears in reputed international journals and IEEE/Scopus-indexed conferences, and she has actively participated in collaborative European consortia advancing engineering solutions. In recognition of her achievements, she has received awards and honors for both her scholarly excellence and her commitment to advancing engineering education, while also contributing to professional associations and volunteer platforms supporting student engagement and knowledge dissemination. In conclusion, Prof. Maria de Lurdes Dinis stands out as a leading researcher whose expertise, impactful publications, international collaborations, and dedication to academic leadership make her highly deserving of recognition. Her future research potential lies in further advancing sustainable engineering, expanding global collaborations, and continuing to shape the next generation of engineers through mentorship and innovation.

Profile: Scopus | Orcid | Google Scholar

Featured Publications:

  • Dinis, M. L., & Camotim, D. (2014). A numerical investigation of the post-buckling behavior of cold-formed steel columns. Thin-Walled Structures, 83(1), 121–133.

  • Dinis, M. L., Silvestre, N., & Camotim, D. (2012). Local-global interaction in cold-formed steel lipped channel columns: Numerical investigation. Journal of Constructional Steel Research, 68(1), 1–13.

  • Dinis, M. L., Silvestre, N., & Camotim, D. (2011). FEM-based analysis of cold-formed steel columns with distortional buckling. Thin-Walled Structures, 49(5), 614–631.

  • Dinis, M. L., & Camotim, D. (2009). Post-buckling behavior and strength of thin-walled lipped channel columns experiencing local–distortional interaction. International Journal of Structural Stability and Dynamics, 9(4), 691–714.

  • Dinis, M. L., Silvestre, N., & Camotim, D. (2008). On the mechanics of local-distortional interaction in cold-formed steel lipped channel columns. Thin-Walled Structures, 46(4), 401–420.

  • Dinis, M. L., Silvestre, N., & Camotim, D. (2007). Numerical investigation of the local–global interaction in lipped channel columns. Computers & Structures, 85(19–20), 1461–1474.

  • Dinis, M. L., Camotim, D., & Silvestre, N. (2006). FEM-based analysis of cold-formed steel members: Local–distortional interaction. Computers & Structures, 84(17–18), 1208–1227.

Hsin Yuan Chen | Engineering | Best Scholar Award

Prof. Hsin Yuan Chen | Engineering | Best Scholar Award

Professor at Zhejiang University | China

Dr. Hsin Yuan Chen is a leading scholar and technologist, currently serving as a Changjiang Scholar Professor and Director at Zhejiang University’s Institute of Wenzhou, Center of Digital Technology Entrepreneurship and Innovation. With an extensive academic and industrial background, she has made significant contributions in smart agriculture, AI, robotics, and digital transformation. Dr. Chen’s interdisciplinary expertise bridges engineering, healthcare, and artificial intelligence, and her work has impacted education, industry collaboration, and technological advancement across Asia. Her recognition includes international fellowships, keynote speaker roles, and leadership in major research centers, positioning her as a dynamic force in intelligent systems and innovation.

Profile:

Google Scholar

Education:

Dr. Hsin Yuan Chen earned her Bachelor’s and Ph.D. degrees in Aerospace Engineering from National Cheng Kung University, Taiwan, completing her doctorate in 2000. She complemented her formal education with a visiting professorship at Washington University in St. Louis, USA, which deepened her global academic perspective. Her educational journey has been distinguished by a strong foundation in systems control, aerospace, and robotics, which later evolved to encompass AI, digital agriculture, and interdisciplinary technology management. This robust academic training underpins her approach to integrating theoretical insights with practical innovations in smart technologies and data-driven platforms.

Experience:

Dr. Hsin Yuan Chen’s professional journey spans over two decades of academic, governmental, and industrial roles. She served as Professor and Dean at Fujian Normal University, CTO at GEOSAT Technology and Mobiletron Electronics, and Assistant Professor at multiple Taiwanese institutions. Additionally, she held advisory roles in patent offices and high-tech companies, contributing to projects on AI positioning systems, smart agriculture, and unmanned vehicles. Her international engagements include collaborations with institutions such as McGill University and Washington University. These diverse experiences enrich her ability to lead transdisciplinary teams and execute complex, innovation-focused initiatives across multiple sectors.

Research Interest:

Dr. Hsin Yuan Chen’s research focuses on the convergence of artificial intelligence, smart agriculture, IoT, blockchain, and autonomous systems. Her projects have addressed real-world challenges in digital transformation, healthcare innovation, and sustainable agriculture. A particular interest lies in integrating explainable AI with blockchain to enhance decision-making in agricultural technology. She is also actively involved in robotics, wireless positioning systems, and medical platforms leveraging sensor technology. Her passion for developing inclusive, intelligent systems is reflected in her projects like AI Doctors for crops and Paro Robots for health monitoring, aiming to merge emotion detection with deep learning-based automation.

Awards and Honors:

Dr. Hsin Yuan Chen has received prestigious accolades including the ScienceFather International Outstanding Scientist Award (2024), IET Fellowship (2023), and ASEAN Fellowship (2022). She was recognized with national teaching excellence awards, innovation medals in higher education, and championship titles in robotics competitions. Her pioneering work has also earned distinctions in cloud technology and virtual cultural heritage. As a member of high-level talent programs in Zhejiang and Fujian Provinces, and a recipient of multiple creativity group medals, Dr. Chen’s impact extends across education, technology, and international science forums. Her awards reflect both scholarly excellence and societal contributions.

Publications:

Title: Exploring the sensitivity of next generation gravitational wave detectors

Citations: 1533

Year of Publication: 2017

Title: Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies

Citations: 1322

Year of Publication: 2022

Title: Carbon nanotube computer

Citations: 1228

Year of Publication: 2013

Title: Three dimensional reconstruction of a solid-oxide fuel-cell anode

Citations: 1019

Year of Publication: 2006

Title: GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current

Citations: 895

Year of Publication: 2008

Title: Plasmonic nanolaser using epitaxially grown silver film

Citations: 878

Year of Publication: 2012

Title: Translation and back‐translation in qualitative nursing research: methodological review

Citations: 874

Year of Publication: 2010

Title: Mapping the Evolution: A Bibliometric Analysis of Employee Engagement and Performance in the Age of AI-Based Solutions
Year of Publication: 2025

Title: Advancements in Handwritten Devanagari Character Recognition: A Study on Transfer Learning and VGG16 Algorithm
Citations: 3
Year of Publication: 2024

Title: Intellectual Structure of Explainable Artificial Intelligence: A Bibliometric Reference to Research Constituents
Year of Publication: 2024

Title: Integrating Explainable Artificial Intelligence and Blockchain to Smart Agriculture: Research Prospects for Decision Making and Improved Security
Citations: 39
Year of Publication: 2023

Conclusion:

Dr. Hsin Yuan Chen exemplifies excellence in research, leadership, and innovation, making her a strong candidate for the Best Researcher Award. Her prolific output in scientific publications, transformative projects in smart agriculture and digital health, and her commitment to knowledge transfer through academia-industry collaborations illustrate her deep impact. Dr. Chen’s fusion of AI with real-world applications—particularly in sustainable systems and intelligent automation—positions her at the forefront of global innovation. Her recognition across international platforms affirms her thought leadership and the lasting value of her contributions to science, technology, and education.

Uzma Amin | Engineering | Best Researcher Award

Dr. Uzma Amin | Engineering | Best Researcher Award

Lecturer at Curtin University, Australia.

Dr. Uzma Amin 🎓 is a passionate Lecturer in Electrical Engineering ⚡, with a Ph.D. in the field and over a decade of commitment to academia and applied research. She actively contributes to education through curriculum development and international teaching collaborations 🌍. As a member of IEEE, WIE, and the Young Professional Engineers network 👩‍💻, she also plays a key role in professional communities. Her work bridges academia and industry through hands-on supervision of student-industry projects 🔧. In addition to her technical contributions, she is a committed reviewer and volunteer, driving innovation and empowerment in engineering education 🚀.

Professional Profile:

Scopus

Google Scholar

Suitability For Best Researcher award – Dr. Uzma Amin

Dr. Uzma Amin exemplifies the ideal candidate for the Best Researcher Award through her balanced contributions in research, academia, industrial collaboration, and international teaching. With a Ph.D. in Electrical Engineering, she maintains a strong publication record, participates actively in global professional networks (IEEE, WIE), and has shown leadership and innovation in curriculum design and engineering education. Her research, which aligns with sustainable and impactful themes like renewable energy integration, electrical power systems, and smart grids, is both applied and interdisciplinary, reinforcing her significance in today’s technological landscape.

📘 Education & Experience

  • 🎓 Ph.D. in Electrical Engineering

  • 👩‍🏫 Lecturer in Electrical Engineering

  • 🌐 Taught postgraduate units at Curtin and Yanshan University under international collaboration

  • 📚 Developed and redesigned undergraduate and postgraduate engineering curricula

  • 🔬 23 research publications in indexed journals

  • 🤝 Supervised industrial projects with Regen Pvt Ltd, Rio Tinto, Partum Engineering, and EPC Australia

  • 🌍 Member of IEEE, WIE, and Young Professional Engineers

📈 Professional Development

Dr. Uzma Amin’s professional development reflects her proactive pursuit of excellence in engineering education and practice 🌟. She received the prestigious FHEA fellowship in 2022 🎖️, recognizing her pedagogical innovation. As a vice-chair of IEEE WIE WA section in 2023, she actively organized workshops and networking events 🤝. Her consistent role as a reviewer for top-tier journals like IEEE Access and Elsevier’s Applied Energy 📑 illustrates her influence in academic circles. Her teaching, curriculum innovation, and industrial partnerships exemplify a progressive career dedicated to both research impact and engineering education transformation 💡.

🔬 Research Focus Category

Dr. Uzma Amin’s research lies primarily in Electrical Power Systems and Renewable Energy Integration ⚡🌱. Her work addresses real-world engineering problems through applied research, with a strong emphasis on renewable power generation systems, electrical machines, and energy systems optimization 🔋. With 23 publications, she contributes to fields intersecting smart grids, clean energy, and sustainable power infrastructure 🌍. Her industry collaborations with companies like Rio Tinto and Electric Power Conversions Australia underscore the applied nature of her research 🛠️. She also reviews work in computational energy analysis and advanced electrical systems, reflecting a technically diverse focus 📘.

🏅 Awards and Honors

  • 🎖️ FHEA Fellowship, 2022 – Recognized for excellence in higher education teaching

  • 👩‍💼 Vice-Chair, IEEE Women in Engineering (WIE), WA Section, 2023

  • 📝 Regular Reviewer for top journals (IEEE Access, Elsevier, MDPI, etc.)

Publication Top Notes

1. Optimal price based control of HVAC systems in multizone office buildings for demand response

  • Authors: U. Amin, M. J. Hossain, E. Fernandez

  • Journal: Journal of Cleaner Production

  • Volume: 270

  • Article No.: 122059

  • Cited by: 67

  • Year: 2020

  • Summary: This paper proposes a price-based control strategy for HVAC systems in multizone office buildings to enhance energy efficiency and responsiveness in demand-side management under smart grid settings.

2. Computational tools for design, analysis, and management of residential energy systems

  • Authors: K. Mahmud, U. Amin, M. J. Hossain, J. Ravishankar

  • Journal: Applied Energy

  • Volume: 221

  • Pages: 535–556

  • Cited by: 52

  • Year: 2018

  • Summary: The article surveys and evaluates various computational tools that assist in designing and managing residential energy systems, particularly under the influence of emerging distributed energy resources.

3. Integration of renewable energy resources in microgrid

  • Authors: M. Ahmed, U. Amin, S. Aftab, Z. Ahmed

  • Journal: Energy and Power Engineering

  • Volume: 7 (1)

  • Pages: 12–29

  • Cited by: 44

  • Year: 2015

  • Summary: This study discusses the integration strategies of renewable energy sources in microgrids and addresses the associated challenges and opportunities from technical and economic perspectives.

4. Design, construction and study of small scale vertical axis wind turbine based on a magnetically levitated axial flux permanent magnet generator

  • Authors: G. Ahmad, U. Amin

  • Journal: Renewable Energy

  • Volume: 101

  • Pages: 286–292

  • Cited by: 39

  • Year: 2017

  • Summary: This work presents a detailed design and performance analysis of a small-scale vertical axis wind turbine, incorporating a magnetically levitated generator to reduce friction and improve energy efficiency.

5. Energy trading in local electricity market with renewables—A contract theoretic approach

  • Authors: U. Amin, M. J. Hossain, W. Tushar, K. Mahmud

  • Journal: IEEE Transactions on Industrial Informatics

  • Volume: 17 (6)

  • Pages: 3717–3730

  • Cited by: 37

  • Year: 2020

  • Summary: The paper develops a contract-theoretic framework for local energy trading in a renewable-integrated smart grid setting, ensuring fair pricing and demand satisfaction.

6. Performance analysis of an experimental smart building: Expectations and outcomes

  • Authors: U. Amin, M. J. Hossain, J. Lu, E. Fernandez

  • Journal: Energy

  • Volume: 135

  • Pages: 740–753

  • Cited by: 34

  • Year: 2017

  • Summary: This study presents real-time data and performance evaluation of an experimental smart building, highlighting discrepancies between expected and actual outcomes in energy consumption and management.

🧾 Conclusion

In conclusion, Dr. Uzma Amin’s career trajectory, research excellence, and international impact make her an outstanding contender for the Best Researcher Award. Her ability to merge technical depth with practical relevance, academic influence, and community engagement embodies the spirit of a researcher committed not just to discovery but also to societal and industrial transformation. Recognizing her with this award would celebrate a truly multidimensional and forward-thinking scholar. 🏆

Ali Alshamrani | Engineering | Best Researcher Award

Ali Alshamrani | Engineering | Best Researcher Award

Assistant professor at Taifuniversity, Saudi Arabia.

Dr. Ali M. Alshamrani is an accomplished mechanical engineer with a strong background in both academia and industry. Currently serving as an Assistant Professor at Taif University, his expertise lies in fluid mechanics, oil spill behavior, and renewable energy. His extensive research has led to multiple peer-reviewed publications in reputable journals, focusing on areas such as oil slick contraction and fragmentation, and renewable energy solutions like solar distillation. With a solid foundation in teaching and research, Dr. Alshamrani continues to contribute significantly to the advancement of mechanical engineering.

📚 Profile

Scopus

🎓 Education

Dr. Alshamrani earned his Ph.D. in Mechanical Engineering from the University of South Florida (USF) in 2022, graduating with an impressive GPA of 3.9/4.0. His doctoral studies focused on fluid mechanics, material science, and oil spill behavior. He also completed his M.Eng. at USF in 2018 with a GPA of 3.86/4.0, where he conducted research on material sciences and manufacturing processes. Dr. Alshamrani’s academic journey began with a B.Sc. in Mechanical Engineering from Umm Al Qura University in 2014, where he worked on a vortex tube cooler for his graduation project.

💼 Experience

Dr. Alshamrani’s experience spans both industry and academia. He completed internships at Saudi Aramco and King Abdullah & Al Salam Co., where he gained hands-on experience in refinery operations, aircraft maintenance, and construction projects. In academia, he has held teaching positions, including as a lecturer and lab instructor at Taif University, and as a teaching and research assistant at USF. Currently, as an Assistant Professor at Taif University, he teaches courses on fluid mechanics, heat transfer, and fluid dynamics while continuing his research in mechanical engineering.

🔬 Research Interests

Dr. Alshamrani’s research interests focus on fluid mechanics, oil spill dynamics, and renewable energy systems. His work has explored the contraction and fragmentation of crude oil slicks using chemical herders, an innovative approach to oil spill mitigation. He is also involved in research on the design and performance of wind turbines and solar distillers. His interest in combining mechanical engineering principles with environmental challenges positions him at the forefront of sustainable engineering solutions.

🏆 Awards and Honors

Throughout his academic career, Dr. Alshamrani has consistently demonstrated excellence, reflected in his high GPAs during his graduate studies. His research has been recognized at international conferences, including the American Physical Society’s Division of Fluid Dynamics meetings, where his work on oil spill dynamics was featured. Additionally, his contributions to the study of renewable energy technologies have garnered attention within the academic community, further cementing his reputation as a leading researcher in his field.

🔚 Conclusion

Dr. Ali M. Alshamrani is highly qualified for a Best Researcher Award due to his academic excellence, impactful research contributions, and teaching achievements. His expertise in mechanical engineering, particularly fluid mechanics and oil spill research, combined with his real-world industry experience, makes him a strong contender. Expanding his research scope and fostering international collaboration could further strengthen his candidacy in future awards.

Publications Top Notes 📚

Application of an AI-based optimal control framework in smart buildings using borehole thermal energy storage combined with wastewater heat recovery
Alshamrani, A., Abbas, H.A., Alkhayer, A.G., El-Shafay, A.S., Kassim, M.
Journal of Energy Storage, 2024, 101, 113824
Citations: 0

Insights into water-lubricated transport of heavy and extra-heavy oils: Application of CFD, RSM, and metaheuristic optimized machine learning models
Alsehli, M., Basem, A., Jasim, D.J., Musa, V.A., Maleki, H.
Fuel, 2024, 374, 132431
Citations: 2

Enhancing pyramid solar still performance using suspended v-steps, reflectors, Peltier cooling, forced condensation, and thermal storing materials
Alshamrani, A.
Case Studies in Thermal Engineering, 2024, 61, 105109
Citations: 0

Conceptual design and optimization of integrating renewable energy sources with hydrogen energy storage capabilities
Zhao, Q., Basem, A., Shami, H.O., Ahmed, M., El-Shafay, A.S.
International Journal of Hydrogen Energy, 2024, 79, pp. 1313–1330
Citations: 1

Intelligent computing approach for the bioconvective peristaltic pumping of Powell–Eyring nanofluid: heat and mass transfer analysis
Akbar, Y., Huang, S., Alshamrani, A., Alam, M.M.
Journal of Thermal Analysis and Calorimetry, 2024, 149(15), pp. 8445–8462
Citations: 1

Dimensionless dynamics: Multipeak and envelope solitons in perturbed nonlinear Schrödinger equation with Kerr law nonlinearity
Afsar, H., Peiwei, G., Alshamrani, A., Alam, M.M., Aljohani, A.F.
Physics of Fluids, 2024, 36(6), 067126
Citations: 2

Intelligent computing for the electro-osmotically modulated peristaltic pumping of blood-based nanofluid
Akbar, Y., Çolak, A.B., Huang, S., Alshamrani, A., Alam, M.M.
Numerical Heat Transfer; Part A: Applications, 2024
Citations: 0

Neural network design for non-Newtonian Fe3O4-blood nanofluid flow modulated by electroosmosis and peristalsis
Akbar, Y., Huang, S., Alshamrani, A., Alam, M.M.
Modern Physics Letters B, 2024, 2450394
Citations: 1

Analysis of interfacial heat transfer coefficients in squeeze casting of AA6061 aluminum alloy with H13 steel die: Impact of section thickness on thermal behavior
Khawale, V.R., Alshamrani, A., Palanisamy, S., Sharma, M., Alrasheedi, N.H.
Thermal Science, 2024, 28(1), pp. 223–232
Citations: 0

Investigation of the performance of a double-glazing solar distiller with external condensation and nano-phase change material
Alshamrani, A.
Journal of Energy Storage, 2023, 73, 109075
Citations: 4