Xize Dai | Engineering | Best Academic Researcher Award

Dr. Xize Dai | Engineering | Best Academic Researcher Award 

Postdoctoral Research Fellow at Unversity of Queensland | Australia

Dr. Xize Dai is a distinguished Postdoctoral Research Fellow at the University of Queensland, Australia, specializing in high-voltage insulation and dielectric physics. His work has centered on advancing the reliability of polymer insulation systems, particularly within renewable energy and power electronics applications. Through extensive research into degradation mechanisms and advanced diagnostic techniques, he has built a strong international reputation in insulation science. Recognized for his academic excellence and technical expertise, he has actively contributed to both experimental studies and theoretical modeling, bridging the gap between material behavior and system-level reliability in modern energy applications.

Profile:

Google Scholar

Education:

Dr. Xize Dai earned his Ph.D. in Energy from Aalborg University, Denmark, where his doctoral research focused on dielectric dynamics and equivalent circuit modeling of polymer insulation under multifrequency stress conditions. He also pursued advanced studies as a visiting researcher at the University of Bologna in Italy, where he refined his expertise in high-field dielectric spectroscopy and partial discharge characterization. Prior to this, he obtained his Master’s degree in Electrical Engineering at Chongqing University, China, with a thesis on thermal degradation of submarine cable insulation, and a Bachelor’s degree in Smart Grid and Information Engineering at Liaoning Technical University.

Experience:

Dr. Xize Dai’s professional experience spans leading research institutions and industry collaborations. He has worked on projects addressing degradation mechanisms, condition monitoring, and modeling of insulation materials for renewable energy applications. His tenure as a visiting researcher at Khalifa University provided exposure to photovoltaic system diagnostics and advanced insulation methodologies. Collaborations with globally recognized experts at Bologna, Oxford, and Khalifa University enriched his expertise in multiphysics modeling and advanced dielectric testing. Additionally, his engagement with IEEE as an active member of the Dielectrics and Electrical Insulation Society reflects his dedication to international research exchange and technical community service.

Research Interests:

Dr. Xize Dai’s research lies at the intersection of dielectric physics, material science, and renewable energy. His interests include investigating high-performance insulation materials for power systems, with a focus on polymeric and heterogeneous composites. He explores aging mechanisms and degradation processes under combined electrical, thermal, mechanical, and environmental stresses. His expertise extends to dielectric and impedance spectroscopy, partial discharge analysis, and multiphysics simulations using finite element methods. By developing advanced equivalent circuit models and health monitoring frameworks, he aims to enhance predictive maintenance and digital twin applications, ensuring greater efficiency, safety, and sustainability in high-voltage energy infrastructure.

Awards and Honors:

Dr. Xize Dai has been recognized with numerous academic honors for his exceptional contributions to high-voltage engineering and insulation research. His work has earned prestigious national scholarships and merit-based academic awards during his Bachelor’s and Master’s studies, reflecting his consistent academic excellence. His Master’s thesis was recognized with an award for outstanding research on insulation aging behavior. He has also received international research funding to support overseas collaborations and has been invited as a session chair, technical committee member, and keynote speaker at international conferences. These honors reflect his global recognition as an emerging leader in his field.

Publications:

Title: Multi-dimensional analysis and correlation mechanism of thermal degradation characteristics of XLPE insulation for extra high voltage submarine cable
Citation: 49
Year of Publication: 2021

Title: Synergistic enhancement effect of moisture and aging on frequency dielectric response of oil-immersed cellulose insulation and its degree of polymerization evaluation using …
Citation: 43
Year of Publication: 2021

Title: Physical mechanism analysis of conductivity and relaxation polarization behavior of oil-paper insulation based on broadband frequency domain spectroscopy
Citation: 36
Year of Publication: 2021

Title: Ageing state identification and analysis of AC 500 kV XLPE submarine cable based on high-voltage frequency dielectric response
Citation: 32
Year of Publication: 2020

Title: High-voltage frequency domain spectroscopy analysis of a thermally aged XLPE submarine cable under continuous and cyclic voltage based on carrier transport and polarisation …
Citation: 18
Year of Publication: 2022

Title: Influence of thermal ageing on high-field polarisation characteristics and conductivity behaviour of submarine polymeric cables insulation
Citation: 17
Year of Publication: 2023

Title: Unraveling High Temperature-Induced Glass Transition Effect on Underlying Multitimescales Dynamic Mechanisms of Epoxy Resin Insulation in Power Electronic Applications
Citation: 3
Year of Publication: 2024

Conclusion:

Dr. Xize Dai has established himself as a highly accomplished researcher at the forefront of electrical insulation and renewable energy studies. Through innovative modeling approaches, advanced diagnostic methods, and impactful collaborations, he has significantly contributed to enhancing the reliability of high-voltage systems. His work directly supports the integration of renewable energy technologies with safer and more efficient insulation materials. Recognized by leading international scholars and organizations, Dr. Xize Dai continues to push the boundaries of dielectric physics and insulation science. His academic rigor, professional service, and global collaborations make him a strong candidate for this award.

Ali Alshamrani | Engineering | Best Researcher Award

Ali Alshamrani | Engineering | Best Researcher Award

Assistant professor at Taifuniversity, Saudi Arabia.

Dr. Ali M. Alshamrani is an accomplished mechanical engineer with a strong background in both academia and industry. Currently serving as an Assistant Professor at Taif University, his expertise lies in fluid mechanics, oil spill behavior, and renewable energy. His extensive research has led to multiple peer-reviewed publications in reputable journals, focusing on areas such as oil slick contraction and fragmentation, and renewable energy solutions like solar distillation. With a solid foundation in teaching and research, Dr. Alshamrani continues to contribute significantly to the advancement of mechanical engineering.

📚 Profile

Scopus

🎓 Education

Dr. Alshamrani earned his Ph.D. in Mechanical Engineering from the University of South Florida (USF) in 2022, graduating with an impressive GPA of 3.9/4.0. His doctoral studies focused on fluid mechanics, material science, and oil spill behavior. He also completed his M.Eng. at USF in 2018 with a GPA of 3.86/4.0, where he conducted research on material sciences and manufacturing processes. Dr. Alshamrani’s academic journey began with a B.Sc. in Mechanical Engineering from Umm Al Qura University in 2014, where he worked on a vortex tube cooler for his graduation project.

💼 Experience

Dr. Alshamrani’s experience spans both industry and academia. He completed internships at Saudi Aramco and King Abdullah & Al Salam Co., where he gained hands-on experience in refinery operations, aircraft maintenance, and construction projects. In academia, he has held teaching positions, including as a lecturer and lab instructor at Taif University, and as a teaching and research assistant at USF. Currently, as an Assistant Professor at Taif University, he teaches courses on fluid mechanics, heat transfer, and fluid dynamics while continuing his research in mechanical engineering.

🔬 Research Interests

Dr. Alshamrani’s research interests focus on fluid mechanics, oil spill dynamics, and renewable energy systems. His work has explored the contraction and fragmentation of crude oil slicks using chemical herders, an innovative approach to oil spill mitigation. He is also involved in research on the design and performance of wind turbines and solar distillers. His interest in combining mechanical engineering principles with environmental challenges positions him at the forefront of sustainable engineering solutions.

🏆 Awards and Honors

Throughout his academic career, Dr. Alshamrani has consistently demonstrated excellence, reflected in his high GPAs during his graduate studies. His research has been recognized at international conferences, including the American Physical Society’s Division of Fluid Dynamics meetings, where his work on oil spill dynamics was featured. Additionally, his contributions to the study of renewable energy technologies have garnered attention within the academic community, further cementing his reputation as a leading researcher in his field.

🔚 Conclusion

Dr. Ali M. Alshamrani is highly qualified for a Best Researcher Award due to his academic excellence, impactful research contributions, and teaching achievements. His expertise in mechanical engineering, particularly fluid mechanics and oil spill research, combined with his real-world industry experience, makes him a strong contender. Expanding his research scope and fostering international collaboration could further strengthen his candidacy in future awards.

Publications Top Notes 📚

Application of an AI-based optimal control framework in smart buildings using borehole thermal energy storage combined with wastewater heat recovery
Alshamrani, A., Abbas, H.A., Alkhayer, A.G., El-Shafay, A.S., Kassim, M.
Journal of Energy Storage, 2024, 101, 113824
Citations: 0

Insights into water-lubricated transport of heavy and extra-heavy oils: Application of CFD, RSM, and metaheuristic optimized machine learning models
Alsehli, M., Basem, A., Jasim, D.J., Musa, V.A., Maleki, H.
Fuel, 2024, 374, 132431
Citations: 2

Enhancing pyramid solar still performance using suspended v-steps, reflectors, Peltier cooling, forced condensation, and thermal storing materials
Alshamrani, A.
Case Studies in Thermal Engineering, 2024, 61, 105109
Citations: 0

Conceptual design and optimization of integrating renewable energy sources with hydrogen energy storage capabilities
Zhao, Q., Basem, A., Shami, H.O., Ahmed, M., El-Shafay, A.S.
International Journal of Hydrogen Energy, 2024, 79, pp. 1313–1330
Citations: 1

Intelligent computing approach for the bioconvective peristaltic pumping of Powell–Eyring nanofluid: heat and mass transfer analysis
Akbar, Y., Huang, S., Alshamrani, A., Alam, M.M.
Journal of Thermal Analysis and Calorimetry, 2024, 149(15), pp. 8445–8462
Citations: 1

Dimensionless dynamics: Multipeak and envelope solitons in perturbed nonlinear Schrödinger equation with Kerr law nonlinearity
Afsar, H., Peiwei, G., Alshamrani, A., Alam, M.M., Aljohani, A.F.
Physics of Fluids, 2024, 36(6), 067126
Citations: 2

Intelligent computing for the electro-osmotically modulated peristaltic pumping of blood-based nanofluid
Akbar, Y., Çolak, A.B., Huang, S., Alshamrani, A., Alam, M.M.
Numerical Heat Transfer; Part A: Applications, 2024
Citations: 0

Neural network design for non-Newtonian Fe3O4-blood nanofluid flow modulated by electroosmosis and peristalsis
Akbar, Y., Huang, S., Alshamrani, A., Alam, M.M.
Modern Physics Letters B, 2024, 2450394
Citations: 1

Analysis of interfacial heat transfer coefficients in squeeze casting of AA6061 aluminum alloy with H13 steel die: Impact of section thickness on thermal behavior
Khawale, V.R., Alshamrani, A., Palanisamy, S., Sharma, M., Alrasheedi, N.H.
Thermal Science, 2024, 28(1), pp. 223–232
Citations: 0

Investigation of the performance of a double-glazing solar distiller with external condensation and nano-phase change material
Alshamrani, A.
Journal of Energy Storage, 2023, 73, 109075
Citations: 4