Wenkun Yang | Engineering | Best Researcher Award

Dr. Wenkun Yang | Engineering | Best Researcher Award

Research associate at Hohai University, China.

Dr. Wenkun Yang is an accomplished researcher in the field of rock mechanics, tunneling, and TBM (Tunnel Boring Machine) technology. His contributions to the field focus on integrating advanced machine learning techniques for rock stability analysis and predictive modeling in underground construction. With 11 Scopus-indexed publications and over 261 citations, Dr. Yang has made a significant impact on geotechnical engineering research. He has authored two books and filed four patents, further demonstrating his innovation in the domain. His work has been recognized in top-tier journals such as Tunnelling and Underground Space Technology and Rock Mechanics and Rock Engineering. Beyond academia, Dr. Yang has collaborated with leading institutions and industry partners, contributing to several high-profile engineering projects. His expertise in numerical modeling, data-driven decision-making, and smart TBM operations has led to groundbreaking advancements in underground infrastructure development. With a strong track record of scientific publications, industrial collaborations, and editorial contributions, he stands as a prominent figure in his field. His ability to bridge theoretical research with practical applications makes him a strong candidate for the Best Researcher Award. His dedication to advancing tunneling technology and his impact on engineering practices continue to earn him recognition in both academic and industrial circles.

Professional Profile:

Education

Dr. Wenkun Yang holds a Ph.D. in Geotechnical Engineering, where his doctoral research focused on integrating artificial intelligence and numerical modeling for rock mechanics applications. His academic journey began with a Bachelor’s degree in Civil Engineering, followed by a Master’s degree specializing in underground engineering. Throughout his educational career, he developed a strong foundation in computational geomechanics, material behavior analysis, and advanced simulation techniques. His research during his Master’s studies emphasized the stability assessment of rock masses in deep tunnels, setting the stage for his later work in TBM technology. During his Ph.D., he worked extensively on data-driven approaches to rock engineering, combining traditional empirical models with machine learning algorithms to enhance prediction accuracy in geological conditions. His education has been complemented by advanced certifications in artificial intelligence applications in engineering and high-performance computing. His academic excellence has been recognized through scholarships and research grants, allowing him to study in collaborative environments with international experts in tunneling and rock engineering. His multi-disciplinary education spanning structural engineering, computational modeling, and artificial intelligence has equipped him with the necessary skills to address complex geotechnical challenges. Dr. Yang’s rigorous academic background forms the foundation for his innovative contributions to the field of underground construction and rock mechanics.

Professional Experience

Dr. Wenkun Yang has extensive professional experience in both academic and industrial settings, making significant contributions to underground engineering and rock mechanics. He currently serves as a senior researcher at a leading geotechnical institute, where he oversees multiple projects on TBM technology and tunneling stability. His role involves leading research teams, mentoring junior researchers, and developing computational models for geotechnical risk assessments. Prior to this position, he worked as a postdoctoral researcher at a renowned university, where he contributed to high-impact projects focusing on intelligent TBM monitoring systems. His industry experience includes collaborations with major engineering firms and governmental agencies, where he applied his research to real-world tunnel construction projects. He has played a crucial role in consulting for large-scale infrastructure developments, providing expertise on ground deformation prediction and machine learning-based tunneling strategies. In addition to his research roles, Dr. Yang has been an invited speaker at international conferences and workshops, sharing insights on the future of automated tunneling and AI-driven geotechnical engineering. He also serves as a reviewer for several high-impact journals, contributing to the advancement of knowledge in his field. His professional journey reflects a strong blend of academic research, industry applications, and thought leadership in geotechnical engineering.

Research Interests

Dr. Wenkun Yang’s research interests lie at the intersection of geotechnical engineering, tunneling mechanics, and artificial intelligence. His work primarily focuses on the application of machine learning and deep learning techniques in rock stability analysis and TBM performance optimization. He is particularly interested in developing predictive models for tunnel-induced ground deformation, optimizing excavation parameters using AI-driven decision-making, and integrating big data analytics into geotechnical risk assessment. Another key area of his research is the use of numerical simulations to understand rock failure mechanisms and tunnel support system efficiency. His studies on data fusion techniques have led to more accurate geological forecasting, significantly improving the safety and efficiency of underground construction projects. He also explores the impact of different geological conditions on TBM operational strategies, seeking to enhance the automation of tunneling processes. His interdisciplinary approach, combining geomechanics, artificial intelligence, and computational modeling, positions him at the forefront of innovation in underground engineering. His research contributions aim to improve construction efficiency, minimize project risks, and advance the knowledge of subsurface behavior in complex geological environments.

Research Skills

Dr. Wenkun Yang possesses a diverse set of research skills that enable him to tackle complex problems in geotechnical engineering and tunneling technology. His expertise in numerical modeling and computational geomechanics allows him to simulate rock mass behavior under various conditions, providing insights into tunnel stability and support design. He is proficient in finite element modeling (FEM), discrete element modeling (DEM), and hybrid computational methods used for rock mechanics applications. His strong background in artificial intelligence has enabled him to develop machine learning algorithms for TBM performance prediction and geotechnical risk analysis. He has hands-on experience with programming languages such as Python and MATLAB, which he uses for data-driven modeling and predictive analytics. Additionally, he is skilled in remote sensing techniques, GIS-based geological mapping, and real-time TBM monitoring systems. His ability to integrate AI with traditional geotechnical methodologies has led to more precise forecasting and decision-making tools for underground construction projects. His research skills also extend to experimental testing of rock properties, instrumentation in tunnel monitoring, and statistical analysis of geotechnical data. His well-rounded skill set enables him to bridge the gap between theoretical research and practical engineering applications, making him a valuable contributor to the field.

Awards and Honors

Dr. Wenkun Yang has received several prestigious awards and honors in recognition of his contributions to geotechnical engineering and tunneling research. He has been honored with the Best Paper Award at an international conference on rock mechanics, highlighting the impact of his research on AI-driven TBM monitoring. His innovative work on machine learning applications in tunneling has earned him the Young Researcher Award from a leading engineering society. Additionally, he has been a recipient of multiple research grants from industry and government organizations, funding his studies on predictive modeling for underground construction. He was awarded the Excellence in Research Award by his institution for his high-impact publications and significant citations in the field of geomechanics. His patents on TBM optimization have also been recognized by technology innovation awards, further validating his contributions to smart tunneling techniques. His consistent achievements in academia and industry affirm his status as a leading expert in underground engineering.

Conclusion

Dr. Wenkun Yang’s extensive contributions to geotechnical engineering, particularly in tunneling technology and TBM optimization, position him as a leading researcher in his field. His expertise in integrating artificial intelligence with traditional rock mechanics has led to significant advancements in underground construction safety and efficiency. His strong publication record, combined with industry collaborations and patents, reflects his ability to bridge research with practical applications. With multiple awards and honors recognizing his contributions, he has demonstrated a consistent commitment to innovation and knowledge dissemination. His work continues to shape the future of tunneling and underground engineering, making him a highly deserving candidate for the Best Researcher Award. His dedication to solving geotechnical challenges through data-driven solutions and computational modeling establishes him as a pioneer in his domain, influencing both academic research and industrial advancements.

Publication Top Notes

  • Feature fusion method for rock mass classification prediction and interpretable analysis based on TBM operating and cutter wear data
    📅 2025 | 📜 Tunnelling and Underground Space Technology
    ✍️ Authors: Yang, W.; Chen, Z.; Zhao, H.; Chen, S.; Shi, C.
    🔗 DOI: 10.1016/j.tust.2024.106351
    📑 EID: 2-s2.0-85213873575
  • Feedback on a shared big dataset for intelligent TBM Part I: Feature extraction and machine learning methods
    📅 2023 | 📜 Underground Space (China)
    ✍️ Authors: Li, J.-B.; Chen, Z.-Y.; Li, X.; Jing, L.-J.; Zhang, Y.-P.; Xiao, H.-H.; Wang, S.-J.; Yang, W.-K.; Wu, L.-J.; Li, P.-Y.
    🔗 DOI: 10.1016/j.undsp.2023.01.001
    📑 EID: 2-s2.0-85151779831
  • Feedback on a shared big dataset for intelligent TBM Part II: Application and forward look
    📅 2023 | 📜 Underground Space (China)
    ✍️ Authors: Li, J.-B.; Chen, Z.-Y.; Li, X.; Jing, L.-J.; Zhang, Y.-P.; Xiao, H.-H.; Wang, S.-J.; Yang, W.-K.; Wu, L.-J.; Li, P.-Y.
    🔗 DOI: 10.1016/j.undsp.2023.01.002
    📑 EID: 2-s2.0-85152230288
  • Probabilistic machine learning approach to predict incompetent rock masses in TBM construction
    📅 2023 | 📜 Acta Geotechnica
    ✍️ Authors: Yang, W.; Zhao, J.; Li, J.; Chen, Z.
    🔗 DOI: 10.1007/s11440-023-01871-y
    📑 EID: 2-s2.0-85151297550
  • Probabilistic model of disc-cutter wear in TBM construction: A case study of Chaoer to Xiliao water conveyance tunnel in China
    📅 2023 | 📜 Science China Technological Sciences
    ✍️ Authors: Yang, W.K.; Chen, Z.Y.; Wu, G.S.; Xing, H.
    🔗 DOI: 10.1007/s11431-023-2465-y
    📑 EID: 2-s2.0-85175035176
  • Excavation rate “predicting while tunnelling” for double shield TBMs in moderate strength poor to good quality rocks
    📅 2022 | 📜 International Journal of Rock Mechanics and Mining Sciences
    ✍️ Authors: Mu, B.; Yang, W.; Zheng, Y.; Li, J.
    🔗 DOI: 10.1016/j.ijrmms.2021.104988
    📑 EID: 2-s2.0-85120046745
  • Significance and methodology: Preprocessing the big data for machine learning on TBM performance
    📅 2022 | 📜 Underground Space (China)
    ✍️ Authors: Xiao, H.-H.; Yang, W.-K.; Hu, J.; Zhang, Y.-P.; Jing, L.-J.; Chen, Z.-Y.
    🔗 DOI: 10.1016/j.undsp.2021.12.003
    📑 EID: 2-s2.0-85124407862
  • Numerical simulation for compressive and tensile behaviors of rock with virtual microcracks
    📅 2021 | 📜 Arabian Journal of Geosciences
    ✍️ Authors: Chen, X.; Shi, C.; Ruan, H.-N.; Yang, W.-K.
    🔗 DOI: 10.1007/s12517-021-07163-7
    📑 EID: 2-s2.0-85105802718
  • Calibration of micro-scaled mechanical parameters of granite based on a bonded-particle model with 2D particle flow code
    📅 2019 | 📜 Granular Matter
    ✍️ Authors: Not provided
    🔗 DOI: 10.1007/s10035-019-0889-3
  • Numerical simulation of column charge explosive in rock masses with particle flow code
    📅 2019-11 | 📜 Granular Matter
    ✍️ Authors: Not provided
    🔗 DOI: 10.1007/s10035-019-0950-2
  • Study of Anti-Sliding Stability of a Dam Foundation Based on the Fracture Flow Method with 3D Discrete Element Code
    📅 2017-10-06 | 📜 Energies
    ✍️ Authors: Chong Shi; Wenkun Yang; Weijiang Chu; Junliang Shen; Yang Kong
    🔗 DOI: 10.3390/en10101544

Jingxin Zhang | Engineering | Best Researcher Award

Jingxin Zhang | Engineering | Best Researcher Award

Lecturer at Southeast University, China.

Dr. Jingxin Zhang is a Lecturer at Southeast University with expertise in fault detection, diagnosis, and process monitoring. She has made significant strides in photovoltaic power forecasting and the application of advanced data-driven methodologies in industrial processes. With a robust academic background and industry experience, Dr. Zhang has established a reputation for blending theoretical research with practical implementation. Her work on multimode process monitoring, which incorporates continual learning, sets her apart as an innovator in her field. Dr. Zhang’s research has resulted in 17 journal publications, nine patents, and significant collaborations with global institutions, enhancing her impact in both academia and industry. She has also led several research and industry projects, showcasing her ability to tackle real-world challenges effectively. Dr. Zhang is an active member of professional societies such as IEEE and the Chinese Association of Automation, further emphasizing her commitment to advancing her field.

📚 Profile

ORCID

Google scholar

🎓 Education

Dr. Jingxin Zhang’s academic journey began at Harbin Engineering University, where she earned her Bachelor of Engineering degree in Electrical Engineering and Automation. She furthered her studies with a Master’s degree in Control Science and Engineering from Harbin Institute of Technology. Her academic pursuits culminated in a Ph.D. in Control Science and Engineering from Tsinghua University, one of China’s most prestigious institutions. Throughout her education, Dr. Zhang focused on developing advanced methodologies for process control, fault detection, and automation, laying the foundation for her impactful career. Her strong educational background has enabled her to contribute to both theoretical advancements and practical applications in her field. As a lifelong learner, Dr. Zhang continues to push the boundaries of her expertise, applying her knowledge to cutting-edge research in data-driven process monitoring and photovoltaic power forecasting.

💼 Experience

Dr. Jingxin Zhang has accumulated extensive experience as both an academic and a researcher. Currently serving as a Lecturer at Southeast University, she has been involved in teaching and mentoring students while advancing her research in fault detection, process monitoring, and renewable energy forecasting. Her academic career has been complemented by active collaboration with industry leaders, making her research highly applicable to real-world industrial processes. Dr. Zhang has led multiple research projects, including five ongoing and four completed ones, focusing on advanced control systems and data-driven fault detection. With nine patents to her name and numerous publications in high-impact journals, her contributions are recognized both in China and internationally. Her involvement in consultancy projects has also strengthened her ability to transfer theoretical knowledge to practical, industry-relevant innovations, positioning her as a rising star in the field of control science and engineering.

🔬 Research Interests

Dr. Jingxin Zhang’s research interests span fault detection, diagnosis, process monitoring, and renewable energy forecasting. A core area of her work lies in developing advanced data-driven approaches to fault detection and diagnosis in complex systems. Her expertise extends to photovoltaic power forecasting, where she applies control science and machine learning techniques to predict energy outputs in industrial-scale solar power systems. Dr. Zhang is particularly interested in continual learning in process monitoring, a novel approach that enables systems to adapt to new data without losing previously learned knowledge. This research is groundbreaking in its ability to improve long-term system efficiency and stability in industries such as energy, manufacturing, and automation. Her work bridges the gap between theoretical advancements in data science and real-world industrial applications, making her research highly impactful in both academic and practical contexts.

🏆 Awards and Honors

Dr. Jingxin Zhang has been recognized for her contributions to control science and engineering through various awards and honors. While specific details of her awards have yet to be widely publicized, her achievements in research and industry collaborations have earned her a solid reputation within the academic community. She has led several prestigious research projects funded by national and provincial organizations, showcasing her leadership and innovation in process monitoring and fault detection. In addition to her research accomplishments, Dr. Zhang has been awarded nine patents, further solidifying her impact on industrial applications. As an active member of professional societies such as IEEE and the Chinese Association of Automation, Dr. Zhang is well-regarded by her peers and continues to be recognized for her groundbreaking work in data-driven approaches to process control. She remains committed to advancing her field and earning additional accolades as her career progresses.

🔚 Conclusion

 Jingxin Zhang is a strong candidate for the Best Researcher Award, particularly due to her innovative contributions to fault detection, data-driven approaches, and industry collaborations. With a focus on continual learning and industrial relevance, her research aligns well with the award’s criteria. Enhancing her academic visibility through more editorial roles and publications could further strengthen her application, positioning her as a leading researcher in her field.

Publications Top Notes 📚

Title: An improved mixture of probabilistic PCA for nonlinear data-driven process monitoring
Author: J Zhang, H Chen, S Chen, X Hong
Year: 2017
Citation: 68

 

Title: Monitoring multimode processes: A modified PCA algorithm with continual learning ability
Author: J Zhang, D Zhou, M Chen
Year: 2021
Citation: 56

 

Title: A data-driven learning approach for nonlinear process monitoring based on available sensing measurements
Author: S Yin, C Yang, J Zhang, Y Jiang
Year: 2016
Citation: 47

 

Title: Multimode process monitoring based on fault dependent variable selection and moving window-negative log likelihood probability
Author: D Wu, D Zhou, J Zhang, M Chen
Year: 2020
Citation: 29

 

Title: Nonlinear process monitoring using a mixture of probabilistic PCA with clusterings
Author: J Zhang, M Chen, X Hong
Year: 2021
Citation: 28

 

Title: Continual learning for multimode dynamic process monitoring with applications to an ultra–supercritical thermal power plant
Author: J Zhang, D Zhou, M Chen, X Hong
Year: 2022
Citation: 24

 

Title: Self-learning sparse PCA for multimode process monitoring
Author: J Zhang, D Zhou, M Chen
Year: 2022
Citation: 16

 

Title: Adaptive cointegration analysis and modified RPCA with continual learning ability for monitoring multimode nonstationary processes
Author: J Zhang, D Zhou, M Chen
Year: 2022
Citation: 15

 

Title: Process monitoring based on orthogonal locality preserving projection with maximum likelihood estimation
Author: J Zhang, M Chen, H Chen, X Hong, D Zhou
Year: 2019
Citation: 14

 

Title: Continual learning-based probabilistic slow feature analysis for monitoring multimode nonstationary processes
Author: J Zhang, D Zhou, M Chen, X Hong
Year: 2022
Citation: 11